TRAITEMENT OSTEOPATHIQUE DES TRAUMATISMES CHEZ LES RAPACES SAUVAGES EN CONVALESCENCE

Par Florine BINET,
elève de 5ème année en ostéopathie animale
à l'ESOAA
Née le 08/01/1996

Maître de mémoire
M. Jérémy DEFAIX
Ostéopathe D.O.H

Soutenance le
12.06.2020
Je tiens à remercier tout particulièrement le Centre de Réhabilitation de la faune sauvage le Tichodrome aux Saillants (38) sans qui toute cette aventure n'aurait pas pu se faire. Je remercie toute l'équipe pour sa confiance, son professionnalisme ainsi que sa patience et son grand sens de la pédagogie. L'équipe des soigneuses, ainsi que tous les engagés en Service Civique, les bénévoles et les écovolontaires ont fait en sorte que ce projet aboutisse. Les amitiés qui sont nées de cette expérience ne seront jamais oubliées.
Un énorme merci à Mireille Lattier, directrice du Centre, qui m'a fait confiance, m'a envoyé les radios, s'est rendue disponible pour que tout se passe pour le mieux et qui m'a envoyé des informations précieuses pour l'aboutissement de mon travail.
Je veux remercier également M. Mathieu Tacci, ostéopathe D.O.H et bénévole au Centre et avec qui j'ai pu manipuler pour la première fois des animaux sauvages. Ses conseils, son calme, sa bienveillance et nos discussions m'ont fait grandir.
Merci à Adeline qui avait instauré notre petit rituel de manipulations à deux avec Mathieu et qui m'a ainsi donné le coup de pouce qu'il me manquait pour me lancer.
Merci à Lætitia, que je n'ai pas eu l'occasion de voir beaucoup, mais qui a contribué au bon déroulement des séances quand elle était là et qui a participé à dresser un bilan de cette expérience.
Merci encore aux bénévoles qui me tenaient les oiseaux quand je les manipulais. Ce travail est aussi le leur.
Merci aussi à mon maître de mémoire, M. Jérémy Defaix, qui a eu la gentillesse et la patience de me guider et de lire les différentes versions de ces travaux.
Merci à Gaëlle Mekis-Dupont, anciennement camarade d'école, qui était la plus emballée à l'idée de l'aboutissement de ce mémoire. C'est gratifiant de savoir que certaines personnes s'intéressent de près à votre travail. Alors Gaëlle, merci pour ton impatience et ta curiosité qui m'ont aidée à garder la motivation !
À mon père, qui m'a transmit le virus de l'amour des oiseaux.
À ma mère, qui a fait germer en moi la passion de l’ostéopathie.
À Marie et nos échanges sur l’avancée de nos mémoires respectifs sur le trajet vers Seynod,
à notre amitié mêlée de notre passion commune des animaux.
À Yan, qui ne comprenait pas toujours ce que je lui racontais, mais qui essayait quand même.
LISTE DES FIGURES...7
LISTE DES TABLEAUX...12
LISTE DES ABBREVIATIONS ET DE VOCABULAIRE...13
LISTE DES DIAGRAMMES..14
INTRODUCTION..15
PREMIERE PARTIE : BIOLOGIE DES RAPACES SAUVAGES...16

I. MORPHOLOGIE..16
 A) Forme, taille et poids...16
 B) Téguments..18
 1. La peau..18
 2. Ailes et plumage...20
 2-1. Plumage...20
 2-2. Composition de l’aile...24
 2-3. Pousse et mue...25
 C) Système myologique...71
 D) Système cardio-vasculaire...115

II. PARTICULARITES ANATOMO-PHYSIOLOGIQUES..29
 A) Système squelettique...29
 1. Structure de l’os...30
 2. Le crâne..30
 2-1. Organisation générale..30
 2-2. Appareil hyoïdien...36
 3. Squelette axial...38
 3-1. Cervicales...38
 3-2. Rachis thoracique et thorax..42
 3-3. Vertèbres lombaires, sacrées et bassin...45
 4. Squelette appendiculaire..47
 4-1. Ceinture scapulaire et membre thoracique...47
 4-2. Ceinture pelvienne et membre pelvien..52
 B) Système ligamentaire...60
 C) Système myologique...71
 1. La tête et le cou...72
 1-1. Muscles oculaires...73
 1-2. Muscles du relèvement et de l’abaissement de la mandibule...75
 1-3. Muscles du cou...76
 1-4. Muscles de la trachée, des organes vocaux et muscles du syrinx..78
 1-5. Muscles de la fermeture du pharynx et du larynx..80
 2. Le dos et le tronc..81
 2-1. Muscles du thorax, du dos et de l’abdomen..81
 2-2. Muscles de la queue..85
 3. La ceinture pectorale et les ailes..87
 4. Le bassin et le membre pelvien...96
 4-1. Muscles du bassin et de la cuisse...96
 4-2. Muscles de la jambe et des orteils...102
 D) Système cardio-vasculaire...115
 1. Anatomie du cœur..116
 2. Organisation de l’appareil circulatoire..118
 2-1. Système artériel...118
 2-2. Système veineux...120
 2-3. Système lymphatique...122
 2-4. Le sang...122
E) Système respiratoire...123
 1. Cavités nasales..123
 2. Larynx...125
 3. Trachée et syrinx...126
 4. Poumons, bronches et sacs aériens..126
F) Système digestif..135
 1. Bec, langue et oropharynx...135
 2. L'estomac...137
 3. L'estomac...138
 3-1. Histologie..138
 3-2. Formation des pelotes..140
 4. Le foie...141
 4-1. Topographie et conformation extérieure...............................141
 4-2. Fonctions..142
 5. Le pancréas...143
 6. La rate...144
 7. L'intestin..144
 7-1. Intestin grêle...145
 7-2. Côlon et cæca...146
 8. Rectum et cloaque...147
 9. Stratégies digestives..148
G) Système uro-génital..150
 1. Système urinaire...150
 1-1. Généralités...150
 1-2. Filtration rénale et osmorégulation...150
 2. Système reproducteur...151
 2-1. Chez le mâle...151
 2-2. Chez la femelle...151
H) Systèmes endocrinien et neurologique......................................153
 1. Système nerveux...153
 1-1. La moelle épinière...153
 1-2. Le cerveau..153
 1-3. Système nerveux périphérique et principaux nerfs..................156
 1-4. Système nerveux autonome..160
 2. Système endocrinien...162
J) Organes des sens...164
 1. La vue..164
 2. L'ouïe et l'équilibre...168
 3. L'odorat..170
 4. Le toucher..170
 5. Le goût..171

DEUXIEME PARTIE : LA MANIPULATION D'UN RAPACE SAUVAGE........172
 I. PRESENTATION DU CENTRE DE REHABILITATION DE LA FAUNE SAUVAGE LE TICHODROME...172
 II. MESURES DE SECURITE ET CONTENTION....................................174
 III. EXAMEN CLINIQUE...176
 A) Examen de la cage...176
 B) Anamnèse et examen clinique de l'oiseau.................................178
 1. Anamnèse...178
 2. Examen clinique..179

TROISIEME PARTIE : SOINS OSTEOPATHIQUE APPORTES A DES RAPACES SAUVAGES EN CONVALESCEENCE..............................180
I. PRESENTATION DES TECHNIQUES OSTEOPATHIQUES EMPLOYÉES

A) L’approche tissulaire
B) Les fascias
C) La FTM
D) Le MRP
E) L’approche fluidique

II. PRESENTATION DÉTAILLEE DES CAS CLINIQUES ET RESULTATS DES TESTS

A) Buse Variable 1502
B) Faucon Crécerelle 1850
C) Faucon Crécerelle 1935
D) Buse Variable 1928
E) Chouette Hulotte 1935
F) Chouette Hulotte 1957
G) Buse Variable 1968
H) Buse Variable 1973
I) Hibou Moyen-Duc 1994
J) Épervier femelle 2000
K) Chouette Hulotte 2006
L) Chouette Hulotte 2014
M) Épervier femelle 2039
N) Chouette Hulotte 36
O) Aigle Royal 65
P) Buse Variable 81
Q) Chouette Hulotte 109
R) Circaète Jean-le-Blanc 213
S) Faucon Crécerelle 404

III. INTERPRETATION DES RESULTATS

CONCLUSION
DISCUSSION
ANNEXES
BIBLIOGRAPHIE
RESUME
LISTE DES FIGURES

Figure 1 : Conformation extérieure d'un rapace...17
Figure 2 : Structure de la peau chez les Oiseaux..18
Figure 3 : Les différentes organisation des écailles des pattes des Oiseaux...19
Figure 4 : Glande uropygienne des oiseaux...19
Figure 5 : Les différentes catégories de plume..20
Figure 6 : Zones d'implantation du plumage..21
Figure 7 : Structure d'une plume..22
Figure 8 : Les diverses parties d'une plume...23
Figure 9 : Pygargue à Tête Blanche (Haliaætus leucocephalus)..23
Figure 10 : Classification des plumes de l'aile (aile gauche en vue ventrale)..24
Figure 11 : Répartition des plumes de l'aile sur les os (aile droite en vue ventrale). ..24
Figure 12 : Rapport des rémiges avec le squelette et l'appareil ligamento-fibreux, face ventrale chez un Oiseau (la Tourterelle)..25
Figure 13 : Numérotation et rythme de la mue..25
Figure 14 : Base d'une plume..26
Figure 15 : Les différentes étapes de la poussée d'une plume..27
Figure 16 : Développement des plumes..28
Figure 17 : Squelette d'un Faucon Crécerelle d'Amérique..29
Figure 18 : Structure interne d'un os pneumatique..30
Figure 19 : Tête osseuse du Dindon (face latérale)..31
Figure 20 : Tête osseuse du Dindon (face dorsale)...31
Figure 21 : Tête osseuse du Dindon (face nucale)..32
Figure 22 : Os sphénoïde de Cheval..32
Figure 23 : Tête osseuse du Pigeon (1- face latérale, 2- face ventrale)..33
Figure 24 : Radiographie de la tête d'une Buse Variable..34
Figure 25 : Crâne osseux d'un hibou Grand-Duc d'Europe..34
Figure 26 : Radiographie de la tête d'une Chouette, vue de face..35
Figure 27 : Appareil hyoïdien et mandibule de Pigeon, vue dorsale...36
Figure 28 : Appareil hyoïdien et larynx de Faucon...36
Figure 29 : Appareils hyoïdiens d'un cheval, d'un chien et d'un oiseau..37
Figure 30 : Vertèbres cervicales de l'Hoazin...38
Figure 31 : Vertèbre cervicale moyenne du Dindon..39
Figure 32 : Cervicale haute de Pigeon, vue crâniale..39
Figure 33 : Cervicale moyenne de Pigeon, vue ventrale et caudale..39
Figure 34 : Cervicale moyenne de Pigeon, vue dorsale et crâniale..39
Figure 35 : Première cervicale de l'Oie et du Dindon...40
Figure 36 : Deuxième cervicale de l'Oie et du Dindon...40
Figure 37 : Degrés de mobilité de la tête d'une chouette..41
Figure 38 : Situation des artères carotides et vertébrales dans une vertèbre de chouette.................................41
Figure 39 : Dernière cervicale (XV) du Dindon...42
Figure 40 : Vertèbres thoraciques de la Poule..42
Figure 41 : Thorax et bassin de la Poule...43
Figure 42 : Sternum de l'Oie (vue latérale gauche)..44
Figure 43 : Sternum de l'Oie (vue dorsale ou endothoracique)...44
Figure 44 : Os synsacrum du Dindon..45
Figure 45 : Os coxal de la Poule (vue latérale gauche)...46
Figure 46 : Os coxal de la Poule (vue dorsale)...46
Figure 47 : Radiographie de l'aile gauche d'une Buse Variable en vue de face..47
Figure 48 : Os coracoïde du Dindon, de la Poule et du Pigeon...47
Figure 49 : Os composant l'épaule du Dindon (épaule droite en vue médiale). ..48
Figure 50 : Ceinture scapulaire de la Poule (vue crânio-latérale gauche)...48
Figure 51 : Fonctionnement de la ceinture scapulaire de l'oiseau en vol (vue ventrale)..................................49
Figure 52 : Furcule de l'Oie et du Canard..49
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>Muscles superficiels de la cuisse et du dos (deuxième plan)</td>
<td>50</td>
</tr>
<tr>
<td>99</td>
<td>Muscles superficiels de l'aile (deuxième plan)</td>
<td>51</td>
</tr>
<tr>
<td>100</td>
<td>Muscles superficiels de l'aile (premier plan)</td>
<td>52</td>
</tr>
<tr>
<td>101</td>
<td>Muscles profonds de l'aile (premier plan)</td>
<td>53</td>
</tr>
<tr>
<td>102</td>
<td>Muscles profonds de l'aile (second plan)</td>
<td>54</td>
</tr>
<tr>
<td>103</td>
<td>Muscles profonds de l'aile (troisième plan)</td>
<td>55</td>
</tr>
<tr>
<td>104</td>
<td>Muscles profonds de l'aile (dernier plan)</td>
<td>56</td>
</tr>
<tr>
<td>105</td>
<td>Système de fermeture automatique des doigts</td>
<td>57</td>
</tr>
<tr>
<td>106</td>
<td>Muscles superficiels de la cuisse et du dos</td>
<td>58</td>
</tr>
<tr>
<td>107</td>
<td>Muscles superficiels de la cuisse et du dos (second plan)</td>
<td>59</td>
</tr>
<tr>
<td>108</td>
<td>Muscles superficiels de l'aile (premier plan)</td>
<td>60</td>
</tr>
<tr>
<td>109</td>
<td>Muscles superficiels de l'aile (deuxième plan)</td>
<td>61</td>
</tr>
<tr>
<td>110</td>
<td>Muscles superficiels de l'aile (troisième plan)</td>
<td>62</td>
</tr>
<tr>
<td>111</td>
<td>Muscles superficiels de l'aile (dernier plan)</td>
<td>63</td>
</tr>
<tr>
<td>112</td>
<td>Système de fermeture automatique des doigts</td>
<td>64</td>
</tr>
<tr>
<td>113</td>
<td>Muscles superficiels de la cuisse et du dos</td>
<td>65</td>
</tr>
<tr>
<td>114</td>
<td>Muscles superficiels de la cuisse et du dos (second plan)</td>
<td>66</td>
</tr>
<tr>
<td>115</td>
<td>Muscles superficiels de l'aile (premier plan)</td>
<td>67</td>
</tr>
<tr>
<td>116</td>
<td>Muscles superficiels de l'aile (deuxième plan)</td>
<td>68</td>
</tr>
<tr>
<td>117</td>
<td>Muscles superficiels de l'aile (troisième plan)</td>
<td>69</td>
</tr>
<tr>
<td>118</td>
<td>Muscles superficiels de l'aile (dernier plan)</td>
<td>70</td>
</tr>
<tr>
<td>119</td>
<td>Système de fermeture automatique des doigts</td>
<td>71</td>
</tr>
<tr>
<td>120</td>
<td>Muscles superficiels de la cuisse et du dos</td>
<td>72</td>
</tr>
<tr>
<td>121</td>
<td>Muscles superficiels de la cuisse et du dos (second plan)</td>
<td>73</td>
</tr>
<tr>
<td>122</td>
<td>Muscles superficiels de l'aile (premier plan)</td>
<td>74</td>
</tr>
<tr>
<td>123</td>
<td>Muscles superficiels de l'aile (deuxième plan)</td>
<td>75</td>
</tr>
<tr>
<td>124</td>
<td>Muscles superficiels de l'aile (troisième plan)</td>
<td>76</td>
</tr>
<tr>
<td>125</td>
<td>Muscles superficiels de l'aile (dernier plan)</td>
<td>77</td>
</tr>
<tr>
<td>126</td>
<td>Système de fermeture automatique des doigts</td>
<td>78</td>
</tr>
<tr>
<td>127</td>
<td>Muscles superficiels de la cuisse et du dos</td>
<td>79</td>
</tr>
<tr>
<td>128</td>
<td>Muscles superficiels de la cuisse et du dos (second plan)</td>
<td>80</td>
</tr>
<tr>
<td>129</td>
<td>Muscles superficiels de l'aile (premier plan)</td>
<td>81</td>
</tr>
<tr>
<td>130</td>
<td>Muscles superficiels de l'aile (deuxième plan)</td>
<td>82</td>
</tr>
<tr>
<td>131</td>
<td>Muscles superficiels de l'aile (troisième plan)</td>
<td>83</td>
</tr>
<tr>
<td>132</td>
<td>Muscles superficiels de l'aile (dernier plan)</td>
<td>84</td>
</tr>
<tr>
<td>133</td>
<td>Système de fermeture automatique des doigts</td>
<td>85</td>
</tr>
<tr>
<td>134</td>
<td>Muscles superficiels de la cuisse et du dos</td>
<td>86</td>
</tr>
<tr>
<td>135</td>
<td>Muscles superficiels de la cuisse et du dos (second plan)</td>
<td>87</td>
</tr>
<tr>
<td>136</td>
<td>Muscles superficiels de l'aile (premier plan)</td>
<td>88</td>
</tr>
<tr>
<td>137</td>
<td>Muscles superficiels de l'aile (deuxième plan)</td>
<td>89</td>
</tr>
<tr>
<td>138</td>
<td>Muscles superficiels de l'aile (troisième plan)</td>
<td>90</td>
</tr>
<tr>
<td>139</td>
<td>Muscles superficiels de l'aile (dernier plan)</td>
<td>91</td>
</tr>
<tr>
<td>140</td>
<td>Système de fermeture automatique des doigts</td>
<td>92</td>
</tr>
<tr>
<td>141</td>
<td>Muscles superficiels de la cuisse et du dos</td>
<td>93</td>
</tr>
<tr>
<td>142</td>
<td>Muscles superficiels de la cuisse et du dos (second plan)</td>
<td>94</td>
</tr>
<tr>
<td>143</td>
<td>Muscles superficiels de l'aile (premier plan)</td>
<td>95</td>
</tr>
<tr>
<td>144</td>
<td>Système de fermeture automatique des doigts</td>
<td>96</td>
</tr>
<tr>
<td>145</td>
<td>Muscles superficiels de la cuisse et du dos</td>
<td>97</td>
</tr>
<tr>
<td>146</td>
<td>Muscles superficiels de la cuisse et du dos (second plan)</td>
<td>98</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Muscles profonds de la cuisse et du bassin</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Muscles profonds de la cuisse et du bassin (second plan)</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Muscles les plus profonds de la cuisse et du bassin</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Muscles superficiels de la jambe, vue dorsale</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Muscles de la jambe (second plan), vue dorsale</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Muscles profonds de la jambe, vue dorsale</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Muscles de la jambe, vue latérale droite</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Muscles de la jambe (plan moyen), vue latérale droite</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Muscles profonds de la jambe, vue latérale droite</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Muscles de la cuisse et de la jambe en vue médiale</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Muscles de la jambe en vue médiale</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Muscles profonds de la jambe (premier plan), vue médiale</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Muscles les plus profonds de la jambe, vue médiale</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Muscles de la jambe, vue plantaire</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Muscles de la jambe (second plan), vue plantaire</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Muscles les plus profonds de la jambe, vue plantaire</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Les différents organes des oiseaux</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Conformation extérieure du cœur</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Coupe longitudinale du cœur</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Système électrique cardiaque</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Appareil circulatoire des oiseaux</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Système artériel des oiseaux</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Organisation générale du système artériel de la Poule</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Système veineux des oiseaux</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>Troncs lymphatiques centraux chez un Oiseau</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Fosses nasales du Dindon</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Cavités nasales du Dindon</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Section de la tête d'une buse, laissant apparaître les cavités nasales et le larynx</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Larynx de la Poule</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>Syrinx des oiseaux</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>Poumons de la Poule</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Schéma de la structure du poumon des Oiseaux</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Échanges gazeux chez les oiseaux</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Les divers ostiums des sacs aériens dans les poumons</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Sac aérien thoracique d'un Pigeon</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Sacs aériens des oiseaux</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Sacs aériens d'un Rapace</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>Sacs aériens du Pigeon, vue dorsale</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>Détail des sacs aériens crâniaux du Pigeon, vue crâniale</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>Détail des sacs aériens crâniaux du Pigeon, vue crânio-latérale droite</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>Premier cycle respiratoire des oiseaux</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>Deuxième cycle respiratoire des oiseaux</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Représentation des sacs aériens et du trajet de l'air</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Oropharynx d'un pygargue à tête blanche</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>Langue du Faucon Crécerelle d'Amérique (1,5cm de long)</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Langue de la Chouette Effraie</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>Langue de la Buse Variable, notons l'entrée du larynx et de la trachée derrière elle</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Plis longitudinaux de l'œsophage d'un Pygargue à tête blanche</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Dilatation fisiforme de l'oesophage chez une Chouette</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Vue rapprochée de la muqueuse du proventricule d'un Pygargue à tête blanche</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Muqueuse du gésier d'un Pygargue à tête blanche</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Gésier d'un Aigle</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Cavité abdominale gauche de la Buse Variable</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Cavité abdominale droite de la Buse Variable</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Face pariétale du foie de l'oiseau</td>
<td></td>
</tr>
</tbody>
</table>
sternale gauche..203
Figure 216 : Radiographie de face de la C.H. 36 le 22 Janvier 2020...207
Figure 217 : Radiographie de face la C.H. 36 du 4 Février 2020..208
Figure 218 : Radiographie de face de la C.H. 36 le 19 Février 2020...209
Figure 219 : Radiographie de la face dorsale de l'aile de la C.H. 36 du 19 Février 2020............................210
Figure 220 : Radiographie de face de la C.H. 36 le 3 Mars 2020...211
Figure 221 : Radiographie de la face dorsale de l'aile de la C.H. 36 le 3 Mars 2020.................................212
Figure 222 : Radiographie latéro-ventrale de la C.H. 36 le 24 Mars 2020...213
Figure 223 : Radiographie de face de la C.H. 36 le 24 Mars 2020...214
Figure 224 : Face ventrale du poignet gauche (la tête est vers la gauche) de l'Aigle 65.................................216
Figure 225 : Face ventrale du poignet droit (la tête est vers le haut) de l'Aigle 65, montrant un début de nécrose des tissus (flèche)..216
Figure 226 : Hyphéma à l'œil droit d'un rapace nocturne...226
Figure 227 : Luxation du cristallin chez une Chouette Effraie...227
Figure 228 : Luxation du cristallin chez un Petit-Duc maculé (Megascops asio)..227
Figure 229 : Podagre chez un rapace diurne..228
Figure 230 : Podagre sur une jeune Hulotte...228
Figure 231 : Déplié de l'aile avec écoute sur l'épaule de la Chouette Hulotte 1935...259
Figure 232 : Test de l'intégrité de la membrane patagiene et écoute du coude du Moyen-Du 1994.............260
Figure 233 : Extension du membre pelvien droit avec écoute sur le genou et le tarse de l'Aigle Royal 65....261
Figure 234 : Flexion globale du complexe genou-tarse de l'Aigle Royal 65. La main gauche écoute le genou, tandis que la droite se concentre sur le tarse...262
Figure 235 : Tests de l'articulation tarsienne de l'Aigle Royal 65...263
Figure 236 : Tests des articulation interphalangiennes du doigt II de l'Aigle Royal 65.................................264
Figure 237 : Première approche des cervicales sur la Chouette Hulotte 1935...265
Figure 238 : Test des cervicales en rotation de la Chouette Hulotte 1935...265
Figure 239 : Correction des cervicales du Moyen-Duc 1994..266
Figure 240 : Approche du crâne sur la Chouette Hulotte 1935...267
Figure 241 : Manipulation de l'articulation synsacro-cocygienne du Circaète Jean-le-Blanc avec écoute sur les cervicales et le crâne..269
Figure 242 : Test du diaphragme cervico-thoracique du Moyen-Duc 1994, avec une attention portée sur les os coracoïdes...270
LISTE DES TABLEAUX

Tableau 1 : Tableau comparatif des caractères physiques de différentes espèces de rapace.................................16
Tableau 2 : Formulation vertébrale de différents oiseaux...43
Tableau 3 : Les principaux muscles de la tête et du cou, selon Z. Veselovsky...72
Tableau 4 : Les principaux muscles du trone et de la queue, selon Z. Veselovsky...81
Tableau 5 : Les principaux muscles du membre pectoral, selon Z. Veselovsky...87
Tableau 6 : Les principaux muscles des pattes, selon Z. Veselovsky...96
Tableau 7 : Poids du cœur en % du poids total de l'animal, selon Z. Veselovsky..117
Tableau 8 : Rythme cardiaque maximal de plusieurs espèces, selon Z. Veselovsky..117
Tableau 9 : Les fréquences respiratoires des oiseaux manipulés lors de cette étude, données personnelles.....134
Tableau 10 : Les différents nerfs crâniens et leurs caractéristiques chez les Oiseaux..157
Tableau 11 : Gamme de fréquences perçues par les Oiseaux et par l'Homme (en Hertz)..................................169
Tableau 12 : Devenir des animaux accueillis par Le Tichodrome pour l'année 2018.................................173
Tableau 13 : Quelques questions complémentaires dans l'anamnèse de l'oiseau manipulé............................178
Tableau 14 : Caractéristiques des rapaces manipulés...181
F.C. : Faucon Crécerelle
B.V. : Buse Variable
C.H : Chouette Hulotte
M.D.: Hibou Moyen-Duc
Articulat° synsacro-cc : Articulation synsacro-coccygienne, entre les premières coccygiennes et les dernières vertèbres synsacrées
C0/C1 : articulation entre occiput et atlas
Th. : vertèbres thoraciques
R/U : radius-ulna
coraco : coracoïde
(articulat°) coraco-épaule : articulation entre le coracoïde, humérus et scapula
pg : poignet
+++ : important, fort
+ : et
→ : donc, entraîne, conséquence
réeduc : rééducation (la rééducation au vol se fait en volière)
immo : immobilisation (souvent à l'aide d'un bandage)
mécano : mécano-thérapie, mouvements répétés d'une ou plusieurs articulations pour garder de la mobilité ou la rétraction de la membrane patagienne (aile) ou l'atrophie des muscles des pattes
entures : sorte de « greffes » de plumes. On place la plume d'un oiseau de la même espèce sur le rachis cassé ou coupé de la plume de l'animal, fixée avec des fibres de carbone pour ne pas alourdir le plumage. Cette technique permet le relâché plus précoce de l'animal quand il lui suffit de refaire des plumes pour pouvoir regagner la liberté.
posit° phy : position physiologique mise en place grâce à une solidarisation des plumes des ailes à l'aide d'un petit morceau de sotch, mettant les ailes en position physiologique
rx : radiologie
semaine pro : semaine prochaine (prochaine séance)
sem. : semaine
DO : dysfonction
F/E : flexion/extension
rot° : rotation(s)
ABD/ADD : abduction/adduction
latéro-F° : latéro-flexion
latéro-rot° : latéro-F°- rotat° (paramètres de Fryette)
inf. : infirmerie
vol. : volière
tjs : toujours
pt : point
homéo : homéopathie
x/j : fois par jour
Diagramme 1 : Représentation graphique des différentes phase de la formation d'une pelote en temps...........141
INTRODUCTION

L'idée de cette étude remonte à 2018, alors que je réalisais un écovolontariat au sein de la structure Le Tichodrome (Le Gua, 38), Centre de Sauvegarde de la Faune Sauvage. Après un mois et demi passé à aider aux soins des animaux, la perspective de les aider à surmonter leurs traumatismes grâce à l'ostéopathie s'est profilée. Cela a été possible grâce à Mathieu, ostéopathe D.O. bénévole qui venait apporter ses soins aux animaux pendant la période de mon écovolontariat.

Mon premier objectif est de montrer si l'ostéopathie est salutaire pour des espèces pour qui l'Homme représente une menace. Dans quelle mesure la convalescence est-elle améliorée ou non avec l'apport d'un suivi ostéopathique ? Cette convalescence est-elle réduite ou au contraire allongée ? Quelle est la réponse des sujets aux soins ?

Dans un souci de précision, les Rapaces sauvages étant une espèce peut étudiée en ostéopathie animale, cette étude présente une grande partie sur les spécificités biologiques, physiologiques et anatomiques de ces derniers. Dans une deuxième partie, il a été nécessaire de préciser les conditions d'accueil d'un animal sauvage en Centre de Sauvegarde, et les précautions à prendre lors de leur manipulation. Enfin, nous présenterons les techniques utilisées, les cas cliniques et les résultats du suivi des sujets avant de conclure.
I. MORPHOLOGIE

A) Forme, taille et poids

Le groupe des rapaces diurnes comprend une grande diversité d'espèces classées en deux familles : les Accipitridés (famille des Buses) d'une part et les Falconidés d'autre part, regroupant toutes les espèces de faucons, soit 13 en tout en Europe. Les Falconidés se distinguent de l'autre famille par leur longue queue et leurs ailes plus pointues. Ainsi, un Faucon Crécerelle (*Falco tinnunculus*) ne mesure pas plus de 38cm, avec une envergure entre 70 et 80cm et ne pèse pas au-delà de 300 grammes, tandis qu'un Aigle Royal (*Aquila chrysaetos*) peut mesurer jusqu'à 100cm, avec une envergure comprise entre 1,5 et 2,5m et un poids de 4 à 6kg. L'ordre des Stigiformes comprend tous les Rapaces nocturnes de la planète. Ces derniers présentent des différences notoires surtout au niveau du poids et de la taille. Ainsi, une Chouette d'Athéna ne mesure que 26cm pour un poids d'environ 180g, alors qu'un Grand Duc d'Europe mesure 60cm avec un poids pouvant atteindre les 3kg (Le guide Ornitho).

Toutes ces familles seront prises en compte dans cette étude, en prenant en compte les variations de taille, de forme et de poids propre à chaque espèce.

Trouvons ci-après un tableau récapitulatif des rapaces rencontrés le plus fréquemment, avec les particularités entre sexe s'il y en a :

<table>
<thead>
<tr>
<th>Nom des oiseaux</th>
<th>Taille (cm)</th>
<th>Envergure (cm)</th>
<th>Poids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevêche d'Athéna</td>
<td>26</td>
<td>55-60</td>
<td>180-200g</td>
</tr>
<tr>
<td>(Athena noctua)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chouette Effraie des Clochers</td>
<td>Femelle : 35-40</td>
<td>100-110</td>
<td>Femelle : 570g Mâle : 30-40</td>
</tr>
<tr>
<td>(Tyto alba)</td>
<td>Mâle : 30-40</td>
<td></td>
<td>Mâle : 470g</td>
</tr>
<tr>
<td>Épervier d'Europe</td>
<td>Femelle : 35-40</td>
<td>Femelle : 65-80</td>
<td>Femelle : 185-345g</td>
</tr>
<tr>
<td>(Accipiter nisus)</td>
<td>Mâle : 25-35</td>
<td>Mâle : 60-65</td>
<td>Mâle : 110-200g</td>
</tr>
<tr>
<td>Faucon Crécerelle</td>
<td>38</td>
<td>70-80</td>
<td>250-300g</td>
</tr>
<tr>
<td>(Falco tinnunculus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buse Variable</td>
<td>50-55</td>
<td>110-130</td>
<td>Femelle : 700g à 1,2kg Mâle : 550 à 850g</td>
</tr>
<tr>
<td>(Buteo buteo)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milan Noir</td>
<td>45-60</td>
<td>135-155</td>
<td>650g à 1,5kg</td>
</tr>
<tr>
<td>(Milvus migrans)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chouette Hulotte</td>
<td>37-43</td>
<td>81-96</td>
<td>Femelle : 420-650</td>
</tr>
<tr>
<td>(Strix aluco)</td>
<td></td>
<td>Mâle : 340-540</td>
<td></td>
</tr>
<tr>
<td>Moyen-Duc d'Europe</td>
<td>31-37</td>
<td>86-98</td>
<td>Femelle : 240-370g</td>
</tr>
<tr>
<td>(Asio otus)</td>
<td></td>
<td>Mâle : 220-330g</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 1 : Tableau comparatif des caractères physiques de différentes espèces de rapace

La conformation extérieure peut varier entre les individus. Le poids et la taille varient selon le sexe. Ainsi, la femelle est en général 20% plus grosse que le mâle, ce qui est parfois la seule indication pour déterminer le sexe de l'oiseau. Trouvons ci-après une illustration schématisant la conformation extérieure d'un « rapace type » afin de visualiser les structures visibles chez l'oiseau de proie.
Figure 1 : Conformation extérieure d'un rapace D'après Pascal Ménétrier
B) Téguments

1. La peau

La peau des oiseaux est semblable à celle des reptiles. Elle forme ainsi des écailles sur les pattes et sur les os de la mâchoire, deux étuis cornés formant le bec. La peau des oiseaux est particulièrement fine et délicate. Comme chez les Mammifères, elle est composée de trois couches (Figure 2). L'épiderme est très fin, et aux endroits d'implantation des plumes, il est composé de dix couches superposées, visibles uniquement au microscope (Z. Veselovsky). Sous l'épiderme se trouve le derme, plus fin que celui des Mammifères. Il contient des vaisseaux sanguins et des cellules sensorielles sensibles au toucher, à la température et aux chocs mais également des muscles peauciers. L'hypoderme, un tissu conjonctif lâche, contient surtout des cellules adipeuses et des vaisseaux sanguins. Des muscles striés qui actionnent les zones d'implantation des plumes y sont aussi présents. L'hypoderme présente aussi des lacunes remplies d'air et en relation avec les sacs aériens. La quantité d'air des lacunes est si grande que la peau peut faire un bruit comme du papier quand l'oiseau est stressé ou irrité (Z. Veselovsky).

Au niveau des pattes, la peau s'épaissit et forme le podothèque. Il peut être botté, scutellé ou annelé selon l'espèce rencontrée (Figure 3).
La peau ne comporte aucune glande sébacée ou sudoripare. L'élimination de l'eau et des sels minéraux en surplus se fait par l'élimination des urines et la respiration. La seule glande sébacée du corps est la glande uropygienne (Figure 4). Elle se situe près des plumes sus-caudales, juste avant le pygostyle. Cette glande est une glande holocrine, c'est-à-dire que sa sécrétion est le résultat de la désintégration de cellules à l'intérieur du corps. Les constituants de base de cette sécrétion sont des cires, des acides gras et des alcools. Chez tous les oiseaux elle contient également de la provitamine D, convertie en vitamine D sous l'action des ultraviolets solaires. On suppose que la glande uropygienne apporte à l'oiseau une partie de cette vitamine indispensable (Z. Veselovsky).

La glande uropygienne est indispensable à la santé du plumage. En effet, elle confère aux plumes leur souplesse, prévient la rupture de ces dernières et imperméabilise l'ensemble du plumage.

Figure 3 : Les différentes organisation des écailles des pattes des Oiseaux
H. Boué et R. Chanton

Figure 4 : Schéma de la structure de la glande uropygienne
d’après Bouhier.
H. Boué et R. Chanton
2. Ailes et plumages

2-1. Plumage

Les plumes d'un oiseau sont composées de kératine et de protéines soufrées. Elles peuvent être classifiées en trois catégories distinctes :

- Les pennes comprenant les plumes du corps ou tectrices, les plumes des ailes ou rémiges et celles de la queue ou rectrices. Elles sont composées d'un calamus et d'un rachis creux (*Figure 7 et 8*), de barbes solidarisés par des barbulies ainsi que de barbicelles pour accrocher partiellement les plumes entre elles et former la vexille ou la hampe de la plume. Chez les chouettes, les pennes possèdent en plus une frange qui aide à rendre le vol silencieux.

- Les plumes de duvet sont plus nombreuses que les pennes, plus en profondeur et ne possèdent qu'un très petit calamus et pas de rachis (*Figure 5*). Certaines plumes de duvet peuvent sécréter une poudre blanche, on les appelle alors le duvet poudreux.

- Les filoplumes peuvent s'apparenter à des poils. Elles se situent un peu partout sur le corps, sont bien innervées et renseignent l'oiseau sur les mouvement et la vibration des plumes ainsi que sur leur état.

- Les vibrisses ou plumes sétiformes se composent d'un rachis nu et ressemblent à s'y méprendre aux vibrisses des mammifères. Elles se trouvent autour du bec et des yeux des rapaces.

Les plumes sont réparties sur le corps en ptérylies et en aptéries. Les aptéries sont dépourvues de plumes (*Figure 6*) et se situent surtout au niveau du ventre et de part et d'autre de la ligne médiane du dos. Les ptérylies peuvent être décomposées en plusieurs zones :

- La cape ou le manteau, composés des plumes du dos.
- Le bonnet ou la calotte, composés des plumes capitées. Certaines d'entre elles sont érectiles et forment une huppe, d'autres sont simplement dressées sur la tête comme chez le Hibou Grand-Duc (*Bubo bubo*).
- La bavette, composée des plumes situées sous le bec.
- La couverture parotique, située au niveau de la joue.
- Les plumes scapulaires, ensemble de plumes venant recouvrir l'épaule quand l'oiseau est au repos (à rapprocher des plumes humérales et spinales hautes).
Figure 6 : Zones d'implantation du plumage
Figure 7 : Structure d'une plume

D'après G. Lesaffre
Les ptérylies varient de taille et de forme selon l'espèce et les aptéries ventrales également. Ainsi, les Rapaces possèdent une aptérie ventrale assez étendue quand les oiseaux d'eau en possèdent une très petite.

Le poids du plumage est très élevé comparativement à la masse corporelle. Ainsi, chez le Pygargue à tête blanche (*Haliaëtus leucocephalus*, Figure 9) dont le poids varie entre 3 et 6,5kg, le poids du plumage représente le double de la masse osseuse, ce qui représente 15% de la masse corporelle.

Figure 9 : *Pygargue à tête blanche* (*Haliaëtus leucocephalus*)
2-2. Composition de l'aile

L'aile est composée des pennes de l'aile ou rémiges. On les classifie généralement en rémiges primaires, secondaires et tertiaires (Figure 10). Chez les rapaces, on en compte généralement dix primaires, douze ou treize secondaires et une dizaine de tertiaires. Les pennes de l'aile sont fichées dans l'os (Figures 11 et 12), ce qui rend le processus de pousser et de mue beaucoup plus lent et délicat que les plumes de couverture. Ainsi, on peut voir que la plupart du temps, les rémiges primaires sont implantées dans les doigts II et III ainsi que sur les os métacarpiens, tandis que les rémiges secondaires et tertiaires sont insérées sur l'ulna. L'alula ou l'aile bâtarde, composée de une à trois plumes est fichée dans la phalange du pouce et est primordiale pour le vol. Cette plume permet notamment à l'oiseau de se diriger et de sentir les courants d'air.

Figure 10 : Classification des plumes de l'aile (aile gauche en vue ventrale)
D'après G. Lesaffre

Figure 11 : Répartition des plumes de l'aile sur les os (aile droite en vue ventrale)
Note : les croquis ne sont pas à la même échelle
D'après G. Lesaffre.
2-3. Pousse et mue

La pousse de la plume se décompose en plusieurs étapes (Figure 14 et 15):

- Naissance de la plume à partir d'un bourgeon épidermique présent dans une papille dermique vascularisée (-1- Figure 14).
- Allongement du bulbe, qui va venir entourer un axe dermique ou pulpe, richement vascularisée et innervée (-2-).
- La pulpe se transforme en germe, masse se composant de cellules non différenciées. En se différenciant, les cellules vont se kératiniser.
- La pulpe s'enfonce petit à petit par sa base sous la surface de la peau, entraînant une invagination du derme et formant une dépression appelée follicule plumaire (-3-).
- Se forment ensuite à partir de la zone germinative annulaire (ou collier), entourant la pulpe dermique, les crêtes barbares, futurs barbes et barbulaires, futurs barbules et une gaine kératinisée vient progressivement entourer la pulpe (-4- et -5-).
- Pour finir, la gaine se fend ventralement pour libérer le vexille. La gaine va peu à peu disparaître par usure, laissant la plume maintenue par les muscles l'entourant.
La durée du processus de pousse d'une plume n'est pas déterminée. On peut noter toutefois que ce dernier n'est enclenché idéalement que lorsque les capacités de l'oiseau le permettent. En effet, le processus est gourmand en énergie et en nutriments et si l'oiseau ne se trouve pas dans des conditions optimales, les plumes ne pousseront pas.

L'usure naturelle du plumage fait qu'au bout d'un certain temps, il devient nécessaire de le remplacer. Ce processus, comme chez les Mammifères, s'appelle la mue. Chez les rapaces sauvages, elle a lieu qu'une fois dans l'année, généralement après la saison de reproduction. Ce processus dure environ de 4 à 8 semaines. Cependant, les rapaces domestiqués peuvent se retrouver en état de mue perpétuel car les ressources sont suffisantes pour que l'oiseau se le permettent. Si les oiseaux peuvent s'arracher volontairement des plumes et se gratter pendant cette période, une plume qui tombe seule n'est pas forcément liée à une mue (ex : carence ou traumatisme cassant la plume). La mue des rapaces leur permet de conserver leur capacité à voler tandis que d'autres oiseaux préfèrent se débarrasser de beaucoup de leurs pennes et se retrouvent incapables de voler ou plonger. Le processus de mue des pennes se déroule généralement comme décrit sur la Figure 13. On peut parfois observer que la mue des rectrices commence par la n°3 ou la n°4 et le cycle se poursuit vers les n° 5 et 6 puis vers les deux premières. La penne existante va se décrocher tardivement comparée aux tectrices et une autre va pouvoir pousser à partir du même follicule plumaire. La perte d'une ou plusieurs plumes peut être due à des carences alimentaires, des maladies ou des parasites. Il est donc nécessaire de bien observer le plumage lors de l'anamnèse de l'oiseau pour détecter toute anomalie (voir Deuxième Partie – III.)

Les plumes sont insérées profondément dans la peau et sont actionnées par de petits muscles peauciers, logés dans le derme (Figure 14).
Figure 15 : Les différentes étapes de la pousse d'une plume

Selon A. Cattaruzzi
Figure 16: Développement des plumes

H. Boué et R. Chanton
II. PARTICULARITÉS ANATOMO-PHYSIOLOGIQUES

A) Système squelettique

Figure 17 : Squelette type d'un Faucon Crécerelle d'Amérique

D'après Z. Velovsky
1. Structure de l'os

La structure osseuse est sensiblement la même que celle des Mammifères. Cependant, dans un soucis de légèreté et d'économie d'énergie, les os des oiseaux se sont alvéolés avec l'évolution et certains sont devenus des os pneumatiques ou aérifères (voir Figure 18). Ces os-là sont emplis d'air chez les oiseaux volants et sont en lien direct avec les sacs aériens via des canaux (surtout chez les espèces volant à haute altitude). Ils permettent aux oiseaux de réduire la masse de leur squelette. Par exemple, chez le pygargue à tête blanche, oiseau mesurant 1,80 à 2,3m d'envergure pour un poids pouvant atteindre 6kg, la masse osseuse ne représente que 7% de la masse totale de l'oiseau. La moelle osseuse est essentiellement présente au niveau des épiphyses osseuses et est plus abondante chez la femelle que chez le mâle.

2. Le crâne

2-1. Organisation générale

Le crâne des oiseaux varie de forme et de taille par rapport au reste du corps selon l'espèce. Cela s'explique par la différence de taille du cerveau, du bec et des yeux. Le crâne des oiseaux est décrit en deux catégories principales :

- Le crâne « cérébral ou vertébral » ou neurocranium, constitué des os de la boîte crânienne inférieure ;
- Le crâne « viscéral » ou splanchnocranium, où l'on décrit les os de la face et par extension ceux du bec, l'appareil hyoïdien et la mandibule (Figures 19 et 23).

Ces deux parties sont séparées par la cavité orbitaire ou capsule orbitaire, très étendue chez les rapaces, (surtout les nocturnes). Les os du crâne sont hautement pneumatisés. De fines lames osseuses encadrent ainsi un épais tissu spongieux, ventilé par le naso-pharynx via les cavités nasales.

Le neurocranium (représenté en orange sur les Figures 19, 20 et 21) est composé des os occipital, supraoccipital, basipsotsphénoïde et de la partie postérieure de la capsule otique. Chez certaines espèces, on décrit l'os occipital en trois parties : les os supra-occipital, exoccipital et basioccipital (Figures 20 et 21). Chez d'autres espèces, ces trois os sont fusionnés et on ne parle ainsi que d'un seul et unique os occipital. On décrit aussi comme appartenant au neurocranium le pariétal et parfois le frontal mais la fusion très précoce des os frontaux avec les os nasaux le fait appartenir plus au crâne viscéral qu'au crâne cérébral. L'occiput est l'os qui occupe le plus de surface dans le neurocranium, et sa particularité est qu'il ne présente qu'un seul condyle, permettant ainsi une grande mobilité de la tête.
Figure 19 : Tête osseuse du Dindon (face latérale) Selon V. Ghetie

Figure 20 : Tête osseuse du Dindon (face dorsale) Selon V. Ghetie
Le splanchnocranium (en violet sur la Figure 23) est composé quant à lui de beaucoup plus d’os. En effet, il comprend les os appartenant à la mandibule : l’os dental ou dentaire, l’os supra-angulaire, l’os articulaire et l’os angulaire et tous les autres os du crâne, c’est-à-dire le frontal, le temporal, le quadrate (ou os carré), le quadrato-jugal, le jugal, l’incisif, le lacrymal, le palatin, le vomer, l’incisif, l’ethmoïde, le ptérygoïde et le sphénoïde. Ce dernier os est composé de trois parties (en vert sur la Figure 23) : le basisphénoïde, l’alisphénoïde et le présphénoïde. À la différence des Mammifères, le sphénoïde ne présente pas de processus ptérygoïdes (voir Figure 22). Les processus sont en effet des os indépendants qui ne se soudent pas au présphénoïde (voir r sur la Figure 23).
Le splanchnocranium est composé, en plus des os de la face, les os formant le bec. Chez les Rapaces, la jonction naso-frontale est beaucoup moins marquée que chez le Pigeon par exemple (Figure 24). La base du bec est ainsi quasiment tout de suite au niveau de l'os frontal. La fusion des os frontaux et nasaux confère au crâne des Rapaces de ne pas être prokinétique, c'est-à-dire que le bec supérieur n'est pas mobile par rapport au crâne, comme ce peut être le cas chez les oiseaux d'eau. Ce sont les os maxillaires, prémaxillaires, jugal, quadrato-jugal et les os composant la mandibule qui portent le bec. Chez d'autres oiseaux, comme nous l'avons vu dans les différentes figures, l'os prémaxillaire est aussi appelé os incisif en raison de sa situation. La forme et la taille du bec varient en fonction de l'espèce de Rapace rencontrée (voir Chapitre F) – 1. – et influent ainsi sur la forme et l'importance des os qui le portent.

Chez les Rapaces, encore plus que chez les autres espèces, on trouve une particularité au niveau de l'orbite : les osselets scléraux (Figures 25 et 26). Ces osselets ont un grand rôle dans l'acuité visuelle des oiseaux. Le cristallin n'étant pas modulable chez ces derniers, ce sont les osselets qui, au moyen de petits muscles qui les actionnent, déforment la forme de l'œil et ainsi celle du cristallin pour accommoder les distances.
f : Os frontal
z : Os jugal

r : Os temporal
z' : Os quadrato-jugal

r' : Os temporal, partie écailleuse
z'' : Os quadrat ou carré

Figure 24 : Radiographie de la tête d'une Buse Variable
D'après Thèse Alfort

Figure 25 : Crâne osseux d'un Hibou Grand-Duc
D'après Sheri Amsel
Figure 26 : Radiographie de la tête d'une Chouette, vue de face.

D'après Thèse Alfort
2-2. Appareil hyoïdien

L'appareil hyoïdien présente d'énormes différences entre celui des oiseaux et celui des Mammifères domestiques (voir Figure 29). On peut quasiment dire qu'il fait la même taille que la mandibule (Figure 27). En effet, l'os hyoïde prend la forme d'un arc quand on le regarde du dessus, et les épiphyoïdeums (appelés aussi épibranchiaux) sont très étendus. Chez le Pic Vert ces derniers remontent jusque derrière le crâne pour s'attacher dans la narine gauche, compte tenu de la longueur de la langue chez cet oiseau. Chez les Rapaces, cet appareil devient assez simple et ne présente pas de grandes variations notoires comparé à d'autres espèces de volatiles. L'appareil hyoïdien est ainsi composé d'une pièce osseuse que l'on peut rapprocher du basihyoïdeum des Mammifères domestiques : le basibranchial. Il correspond ainsi au corps de l'os hyoïde. Il est parfois divisé en basibranchial crânial, articulé en avant avec le paraglossum (que l'on peut rapprocher du processus lingual présent chez certaines espèces) et en arrière avec les cératobranchiaux ou cératohyoïdeums ; puis en basibranchial caudal, élément étant relié par des fascias au cartilage thyroïde. Le basibranchial caudal se prolonge parfois par une pièce cartilagineuse, l'urohyale, présent chez les Rapaces. Quand les deux os basibranchiaux sont soudés entre eux, on appelle l'ensemble copula ou basihyale, comme ce peut être le cas chez le dindon ou le canard (Figure 27). Le paraglossum a une forme triangulaire chez la plupart des espèces mais chez les Rapaces il ressemble à une lame allongée et s'articule en avant avec un os fiché dans la langue : l'entoglossum (Figure 28).

Figure 27 : Appareil hyoïdien et mandibule du Pigeon, vue dorsale

Figure 28 : Appareil hyoïdien et larynx de Faucon

D'après Avian Tongues
Figure 29 : Appareils hyoïdiens du Chien, du Cheval et de l'Oiseau Selon R Barone et Proctor et Linch
3. Squelette axial

3-1. Cervicales

Le rachis aviaire présente lui aussi beaucoup de différences par rapport au rachis des Mammifères. En effet, un rapace, qu'il soit diurne ou nocturne, présente quatorze vertèbres cervicales en général là où les Mammifères communs en possèdent sept (Figure 30).

Note : sur cette figure le ligament nuchal a été enlevé et les numéros des cervicales ont été rajoutés. En rouge sont représentées les changements de courbure, zones charnières du rachis cervical.

Figure 30 : Vertèbres cervicales de l'Hoazin
 Selon F.W. Chamberlain

Les deux premières cervicales, atlas et axis, présentent comme chez les Mammifères domestiques des différences très notoires comparées au reste du rachis cervical. En effet, l'atlas est réduit à un anneau qui joue le rôle de glaine recevant le condyle occipital et ne présente pas ou très peu d'ailes (Figure 35). Elle est assez simple dans son organisation et présente parfois un foramen intertransversaire comme ce peut être le cas chez l'Oie ou les Rapaces.
Au niveau de la deuxième vertèbre cervicale, les différences entre Mammifères et volatiles ne sont pas majeures. On retrouve la dent de l'axis, s'articulant à la face caudale de l'atlas, un processus épineux et des processus transverses (Figure 36). L'axis présente également des foramens intertransversaires qui sont présents également chez les Rapaces.

L'organisation et le nombre de cervicales leur confèrent un grand rôle dans la mobilité de l'oiseau, la tête ayant la fonction d'une « main ». Elles jouent également un rôle de balancier dans le vol. Elles permettent à l'oiseau de bouger sa tête de façon à compenser le fait qu'il ne peut pas mobiliser ses yeux pour voir autour de lui. Par exemple, les chouettes et les hiboux sont connus pour tourner leur tête à près de 270° (voir Figure 37).
Cela se doit à l'organisation de l'articulation C0/C1 (occiput/atlas), à la structure des surfaces articulaires, mais aussi à la grande liberté de mouvement des artères vertébrales dans leur foramen transversaire. En effet chez les Rapaces nocturnes, ce foramen est dix fois plus large que le diamètre de l'artère vertébrale. Elle est donc très libre dans le foramen et est en prime entourée de poches d'air, ce qui a pour effet de protéger l'oiseau de toute ischémie lors d'une torsion des vertèbres (Figure 38). Un traumatisme au niveau cervical engendre par conséquent rarement une ischémie ou une rupture d'anévrisme. En revanche cela impactera la mobilité de ces dernières, rendant l'animal plus fragile car moins apte à observer son environnement.

Figure 37 : Degrés de mobilité de la tête d'une chouette
Selon J. Hopkins

Figure 38 : Situation des artères carotides et vertébrales dans une vertèbre de chouette
Selon J. Hopkins
La dernière cervicale est également atypique, d'abord parce que le processus costal s'atrophie et devient quasiment rudimentaire, mais aussi de par son emplacement sur le rachis. En effet, la charnière cervico-thoracique des oiseaux est très mobile, la dernière cervicale est donc plus ou moins écrasée dans sa longueur et présente un processus épineux développé (Figure 39). Elle est très étroite chez les Rapaces et les Gallinacés, en revanche elle s'allonge plus chez les Oies et les Canards.

![Figure 39: Dernière cervicale (XV) du Dindon](image1)

Figure 39 : Dernière cervicale (XV) du Dindon Selon V. Ghetie

3-2. Rachis thoracique et thorax

Le rachis thoracique possède des particularités très spécifiques. En effet, les vertèbres thoraciques sont toutes ou presque soudées entre elles. La plupart du temps, la première vertèbre thoracique est libre tandis que toutes les autres sont soudées, formant ainsi un bloc osseux appelé *notarium*. Le nombre de vertèbres soudées varient énormément entre les espèces, notamment entre les oiseaux chasseurs et les oiseaux d'élevage (Tableau 2). Les vertèbres sont fusionnées entre elles surtout par leur processus épineux et par ossification des disques intervertébraux de manière très précoce. Les crêtes ventrales peuvent se rejoindre et la fusion des arcs entre eux forme un foramen intervertébral qui est toujours présent (Figure 40).

![Figure 40: Vertèbres thoraciques de la Poule](image2)

Figure 40 : Vertèbres thoraciques de la Poule Selon V. Ghetie

- 42 -
De même que la première thoracique peut être libre, la dernière peut l'être aussi pour s'articuler à la première lombaire, mais ce n'est pas toujours le cas. Dans tous les cas, la charnière thoraco-lombaire est une articulation à part entière mais très peu mobile.

<table>
<thead>
<tr>
<th>Famille</th>
<th>Cervicales</th>
<th>Thoraciques</th>
<th>Lombo-sacrées (soudées)</th>
<th>Coccygiennes</th>
<th>Côtes</th>
</tr>
</thead>
</table>
| Gallinacés | 14 | 7 | 14 | 4/5 libres + 3 soudées | Vertébrales : 7
| | | | | | Sternales : 5 |
| Canards | 16 | 8 | 17 | 6 libres + 4 soudées | Vertébrales : 8
| | | | | | Sternales : 7 |
| Cygnes | 24 à 27 | 11 | 16 | 8 libres + 4 soudées | Vertébrales : 13
| | | | | | Sternales : 8 à 9 |
| Rapaces | 14 | 4 à 5 | 14 | 8 libres + 3 soudées | Vertébrales : 8
| | | | | | Sternales : 6 |

Tableau 2 : Formulation vertébrale de différents oiseaux

Comme chez les Mammifères domestiques, les thoraciques sont articulées aux côtes. Chez les oiseaux en revanche on parle de côtes sternales et de côtes asternales ou vertébrales. Les côtes sont peu nombreuses du fait du nombre de vertèbres thoraciques. En réalité, les côtes sternales sont l'équivalent des cartilages costaux présents chez les mammifères, s'articulant à la « vraie » côte et au sternum. Chez les oiseaux, les côtes sternales peuvent se souder au sternum et devenir des extensions de celui-ci. Elles sont plutôt fines et lisses, tandis que les côtes vertébrales sont plus épaisses et présentent un processus remarquable, le processus uncinatus ou processus unciné, servant d'attache aux divers muscles du thorax (*Figure 41*). Le sternum est très volumineux, et est solidarisé avec la furcule à l'aide de larges ligaments. Il est recouvert presque entièrement par les muscles pectoraux, les principaux muscles du vol. Il est un bon indicateur d'embonpoint des oiseaux, mais nous le détaillerons plus tard dans cette étude. Il présente des particularités chez certaines espèces, par exemple chez le cygne où il loge la trachée.

Figure 41 : Thorax et bassin de la Poule
Selon V. Ghetie
Il peut présenter un foramen pneumatique en face endo thoracique, laissant entrer directement la trachée et engendrant une pneumatisation du sternum encore plus importante. Chez les Rapaces, il est assez mince et bref et n’a qu’une mince fonction de protection des organes. On n’y décrit pas de manubrium sternal mais plutôt un épisternum ou processus épisternal. En plus du processus xyphoïde, le sternum présente chez les Gallinacés un processus costal, un processus abdominal et un thoracique, ce qui lui confère une forme caractéristique. Cependant chez les Rapaces comme chez l’Oie, le sternum est de forme plus simple et le processus abdominal rejoint le processus xyphoïde, formant une incisure médiale ou foramen médial quand les processus finissent par s’ossifier ensemble (Figures 42 et 43).

Figure 42 : Sternum de l’Oie (vue latérale gauche) Selon V. Ghetie

Figure 43 : Sternum de l’Oie (vue dorsale ou endothoracique) Selon V. Ghetie
3-3. Vertèbres lombaires, sacrées et bassin

Chez l'oiseau, toutes les vertèbres lombaires et sacrées sont entièrement soudées, formant un os appelé synsacrum (Figure 44). Là où chez les Mammifères domestiques les lombaires sont indépendantes et le sacrum est triangulaire (Équidés) ou carré (Carnivores), le synsacrum des oiseaux est un rectangle à concavité ventrale. Cet os s'ossifie très tôt aux ilia pour former un os du bassin unique. Chez les Rapaces, l'os du bassin se rapproche fortement de la structure de celui de la poule (Figures 45 et 46). Il n'existe pas de symphyse pelvienne et les deux os pubis sont très écartés de la ligne médiane, pour laisser passer les œufs volumineux. L'ensemble du synsacrum et des os du bassin forment l'os coxal, percé de nombreux orifices laissant passer nerfs et artères.

Figure 44 : Os synsacrum du Dindon
Selon V. Ghetie
Figure 45 : Os coxal de la Poule (vue latérale gauche)
Selon V. Ghetie

Figure 46 : Os coxal de la Poule (vue dorsale)
Selon V. Ghetie
4. Squelette appendiculaire

4-1. Ceinture scapulaire et membre thoracique

Le membre thoracique des oiseaux comporte les mêmes caractéristiques chez tous les oiseaux, avec uniquement des variations de taille en fonction de l'espèce. Les auteurs décrivent le membre thoracique généralement à partir de l'humérus (Figure 47), cependant force est de constater que chez l'oiseau il serait plus judicieux d'y inclure le coracoïde et la scapula.

Figure 47 : Radiographie de l'aile gauche d'une Buse Variable en vue de face
D'après Thèse Alfort

Le coracoïde, la scapula et l'humérus forment ensemble une articulation complexe et fondamentale pour la mobilisation du membre en vol, l'articulation gléno-coracoïdo-humérale ou articulation de l'épaule (Figure 49). On peut d'ailleurs remarquer que contrairement aux Mammifères domestiques, la scapula est très allongée et plaquée sur le thorax. Le membre thoracique des oiseaux n'est pas seulement maintenu par les muscles environnants comme ce peut être le cas chez les Mammifères mais est solidement attaché au thorax via l'articulation coracoïdo-sternale (voir B) Système ligamentaire). Les os coracoïde et humérus sont étroitement liés aux sacs aériens environnants, notamment les sacs thoraciques crâniaux et claviculaires. L'os coracoïde est un os que les Oiseaux et les Mammifères ne partagent pas (Figure 48). Il fait pleinement partie de l'articulation gléno-humérale et est articulé directement au sternum. Cette organisation solidarise fermement le membre thoracique au thorax, ce qui est nécessaire dans la pratique du vol.

Figure 48 : Os coracoïde du Dindon, de la Poule et du Pigeon
Selon V. Ghetie
L'ensemble des os coracoïdes, scapulaires et claviculaires forment la ceinture scapulaire ou pectorale (Figure 50) dont le bon fonctionnement est primordial pour le vol, notamment parce qu'elle s'oppose aux frottements de l'air sur les ailes (Figure 51). Ces os articulés entre eux forment le foramen triosseum, passage important pour les tendons des muscles du vol.

Figure 49 : Articulation gléno-humérale du Dindon en vue médiale
Selon V. Ghetie

Figure 50 : Ceinture scapulaire de la Poule (vue crânio-latérale gauche)
Selon V. Ghetie
Les clavicules sont fusionnées pour former un seul os, la furcule. Elle est attachée au sternum et à l'os coracoïde par de solides ligaments et de nombreux muscles, notamment par les muscles pectoraux. La furcule varie de forme et de taille entre les espèces. Chez les Rapaces, sa structure se rapproche de celle des oies (Figure 52). Elle est en forme de crochet vers l'arrière et ne possède pas de processus hypoclédium comme c'est le cas chez le Pigeon ou le Canard.

Figure 51 : Fonctionnement de la ceinture scapulaire de l'oiseau en vol (vue ventrale)

Figure 52 : Furcule de l'Oie et du Canard

Selon V. Ghetie
Les os du bras et de l'avant-bras ont la même conformation que chez les Mammifères domestiques, hormis le fait que, comme dit précédemment, les os sont majoritairement remplis d'air, surtout l'humérus, où on peut retrouver un foramen pneumatique (*Figure 53*), communiquant avec le sac aérien adjacent. L'humérus ne varie pas énormément de conformation d'une espèce à l'autre, hormis la longueur de la diaphyse. Chez certains rapaces diurnes (accipitridés) et nocturnes (quasiment tous les hiboux, absent chez la chouette effraie), il existe à la surface profonde du muscle deltoïde majeur, dorsalement à l’articulation de l’épaule, un petit os appelé *os huméro-scapulaire*, jouant un rôle de poulie pour les muscles environnants. Cet os est visible sur les radiographies, il ne faut pas le confondre avec un fragment osseux provenant d’une fracture.

Figure 53 : Humérus de l’Oie
Selon V. Ghetie
L'organisation des os radius et ulna est sensiblement la même que chez les Mammifères domestiques. L'ulna est supérieur en taille et en diamètre et est plutôt courbé (Figure 54). Le radius quant à lui est fin et assez rectiligne.

C'est arrivé dans la main que l'organisation des os devient complètement différente. En effet, la fusion des os métacarpiens entre eux forme un os métacarpien unique auquel s'articulent les phalanges des doigts. Ces derniers sont au nombre de trois, le pouce où est insérée l'alula et les doigt III et IV (Figure 55). Les os de la main portent les rémiges primaires et sont mobiles pour permettre à l'oiseau de se diriger en vol. On peut aussi retrouver dans l'articulation du poignet deux os formant le carpe : l'os carpal radial et l'os carpal ulnaire. Il peuvent chez certaines espèces se souder suite à des traumatismes ou à une longue immobilisation, entraînant pour l'oiseau une incapacité de fléchir le poignet et donc de voler.

Figure 54 : Radius et ulna du Dindon, de l'Oie, du Canard, de la Poule et du Pigeon Selon V. Ghetie
4-2. Ceinture pelvienne et membre pelvien

Le membre pelvien des oiseaux est identique chez tous. L’os coxal réunit les trois os ilium, ischium et pubis fusionnés entre eux. Rappelons que ce bloc osseux ne comporte aucune articulation entre les os pubis et qu’il est fusionné avec l’os synsacrum (Figures 56, 57 et 58).
On trouve sur ce complexe de nombreux orifices. Comme chez les Mammifères, l'os coxal présente un foramen obturé, mais à lui sont ajoutés le foramen ischiatique et la fissure obturée, formée de l'os pubis s'articulant caudalement à l'os ischium. Ces espaces servent de passage aux vaisseaux et aux nerfs pelviens, provenant des foramens diapophysaires du synsacrum, équivalent des trous de conjugaison des vertèbres des Mammifères (Figure 57).
En vue ventrale, les processus transverses sacrés et lombaires restent bien visibles et les deux dernières côtes sont soudées au complexe (Figure 58). À cet os coxal s'attachent les muscles de la cuisse et de la queue et a pour fonction de protéger les viscères contre les chocs en formant un bloc solide. Ainsi, seules les vertèbres crâniales et caudales à lui sont mobilisables.

Dans l'acétabulum s'articule le fémur (Figure 59). C'est un os pneumatique, en lien avec les sacs aériens les plus caudaux. C'est l'os qui contient le plus de moelle osseuse malgré la présence d'air en son sein.

Au fémur s'articule la rotule ou patella, le tibiotarse et la fibula. Le tibiotarse est le résultat de la fusion de la première rangée des os composant autrefois le tarse et le tibia (Figure 60). La fibula est fusionnée au tibiotarse mais pas complètement, de sorte que chez certaines espèces (notamment les Rapaces) ces deux os forment un petit espace : l'espace interosseux crural où passe des vaisseaux sanguins quand il existe.
Figure 59 : Os fémoral de la Poule
Selon V. Ghetie
Le tibiotarse s'articule ensuite au tarsométatarsé, os résultant de la fusion entre les métatarsiens et la deuxième rangée des os du tarse. Cet os présente des trochlées où s'articulent les phalanges proximales des doigts (Figure 61). Il présente chez les mâles de certaines espèces d'oiseau un ergot, comme ce peut être le cas chez les Coqs ou les Dindons (Figure 63). Chaque doigt possède une phalange de plus que le numéro qu'il porte. Ainsi le doigt II possède trois phalanges et le doigt IV en possède cinq. Généralement on observe 3 doigts dirigés vers l'avant et un doigt dirigé vers l'arrière : c'est une adaptation au perchage rencontrée dans de nombreuses espèces. Cette position des doigts est permanente chez les rapaces diurnes, ils sont dits anisodactyles (d'après Thèse Alfort, voir Figure 62). Ce sont les dernières phalanges qui portent les griffes, qui présentent leur développement maximal chez les Rapaces. En effet, on parle chez eux de serres. La longueur des griffe varie selon l'espèce ainsi que la forme et la longueur des doigts. Cela est lié aux modes de chasse et d'alimentation qui diffèrent d'un Rapace à l'autre (Figure 64).

Figure 60 : Os tibiotarse et fibual du Dindon, du Sanard, de l'Oie, de la Poule et du Pigeon

Selon V.Ghetie
Figure 61 : Tarsométatarse de la Poule Selon V. Ghetie

Figure 62 : Les différentes organisations des doigts des Oiseaux
Figure 63 : Autopodium du Dindon

Selon V. Ghetie
Figure 64 : Les différents types de pattes de Rapaces
D'après Philippe Garguil
B) Système ligamentaire

Les ligaments sont des structures liant les articulations entre elles. Du fait de l'organisation ostéologique des oiseaux, il y a naturellement des ligaments qui diffèrent de ceux des Mammifères. Ils n'ont pas de caractéristiques propres chez les oiseaux en général. Trouvons donc ci-après des figures illustrant les différentes articulations du corps de l'oiseau et les ligaments qui les solidarisent (*Figures 65 à 79*). Nous organiserons ces figures en régions : la tête, le cou, le membre pectoral, le tronc, et le membre pelvien.
Votre image contient une figure détaillant les articulations atlanto-occipitale et atlanto-axiale. Les étiquettes correspondant à divers éléments anatomiques sont fournies ci-dessous :

A. Articulation atlanto-occipitale
B. Articulation atlanto-axiale
C. Attache du ligament de la dent à l’atlas
D. Capsule articulaire ventrale
E. Ligament atlanto-occipital dorsal
F. Membrane atlanto-axiale dorsale
G. Ligament de la dent
H. Ligaments interépineux superficial et profond

Figure 66 : Articulations atlanto-occipitale et atlanto-axiale

F.W. Chamberlain
Figure 67 : Ligament nuchal en vue latérale droite

Selon F.W. Chamberlain
Figure 68 : Articulations inter-vertébrales
Selon F.W. Chamberlain

J. Ligament du nucleus pulposus
K. Fibrocartilage
L. Ligament longitudinal dorsal
M. Ligament interneural et capsule articulaire
N. Processus articulaire crânial
O. Ligament jaune
P. Canal vertébral
Q. Ligaments interneuraux latéraux

Figure 69 : Articulation de l’épaule en vue médiale
Selon F.W. Chamberlain

A. Ligament latéral
B. Ligament médial
C. et D. Ligaments interosseux
E. Foramen trissseum
F. Ligament interosseux
Figure 70 : Articulation coracoïdo-sternale Selon F.W. Chamberlain

1. Os coracoïde
2. Manubrium sternal
3. Processus latéral crânial du sternum
A. Ligament manubrio-coracoidien
B. Ligament sterno-coracoidien

Figure 71 : Articulation du coude
Selon F.W. Chamberlain

Articulation du coude :
A. Ligament collatéral dosral
B. Ligament collatéral ventral
C. Ligament interosseux
Figure 72 : Articulations de l'avant-bras en vue dorsale et ventrale

Selon F.W. Chamberlain

Articulation radio-ulnaire distale :
E. Ligament interosseux distal

Articulation du poignet :
B. Ligament radio-carpo-métacarpien médial
C. Ligament ulno-carpien médial
D. Ligament ulno-carpo-métacarpien
F. Ligament radio-carpien radial
G. Ligament radio-carpien ulnaire
H. Ligament intercarpien

Articulations carpo-métacarpo-phasisiennes :
I. Ligament carpo-métacarpo-phasisien latéral du doigt II
J. Ligament carpo-métacarpo-phasisien médian
K. Ligament carpo-métacarpo-phasisien dorsal
M. Ligament carpo-métacarpo-phasisien médian du doigt III
P. Ligament carpo-métacarpo-phasisien latéral du doigt IV

Articulation inter-phasisiennes :
O. Ligament interphalangien médial du doigt III
L. Ligament interphalangien distal du doigt II

Articulation interdigitée :
N. Ligament interosseux des premières phalanges des doigt III et IV
Figure 73 : Articulations des côtes
Selon F.W. Chamberlain

Figure 74 : Ligaments du tronc
Selon F.W. Chamberlain
Figure 75 : Ligaments de l'os coxal
Selon F.W. Chamberlain

Figure 76 : Articulation coxo-fémorale
Selon F.W. Chamberlain
Figure 77 : Articulations du genou
Selon F.W. Chamberlain

A. Ligament tibio-patellaire
B. Ligament fémoro-patellaire médial
C. Ligament collatéral médial
D. Capsule articulaire

E. Ligament collatéral latéral
F. Ligament croisé médial
G. Ligament croisé latéral
H. Ménisque médial
I. Epine tibiale
J. Branche latérale du ménisque médial s'attachant la surface médiale du condyle latéral du fémur
K. Ligament ménisco-fémoral
L. et M. Ménisque latéral
N. Attache musculaire au ligament latéral
O. Attache musculaire à la fibula
Figure 78 : Articulation de la cheville (/tarsienne) Selon F.W. Chamberlain
Articulations inter-tarso-métatarsiennes :
A. Ligament intermétatarsien

Articulation tarso-métatarso-phalangiennes :
B. Ligaments collatéraux

Articulations inter-phalangiennes :
C. Ligaments collatéraux

Figure 79 : Articulations distales
Selon F.W. Chamberlain
C) Système myologique

Il existe deux types de muscles : les muscles lisses qui concernent les intestins, les oviductes, l'estomac etc... et dont l'action est involontaire et régie par le système nerveux autonome (SNA), et les muscles striés qui agissent sur les os et sous contrôle du système nerveux central (SNC), volontaire. Les muscles striés comportent deux sortes de fibres : les fibres rouges et les fibres blanches. Les fibres rouges travaillent beaucoup plus lentement que les blanches, mais se fatiguent beaucoup moins vite. Ainsi, on retrouvera beaucoup plus de fibres musculaires blanches chez les Gallinacés et les oiseaux vivant au sol tandis que les oiseaux qui volent longtemps, comme les pigeons, les canards ou les martinets n'en possèdent que très peu (Z. Veselovsky).

Figure 80 : Muscles du Faucon Crécerelle d'Amérique

Selon Z. Veselovsky
1. La tête et le cou

Les muscles de la tête servent surtout à la mastication, au chant, au nettoyage du plumage etc... Couplés avec les muscles du cou, ils contribuent à la mobilisation de la tête pour l'observation de l'environnement, les yeux étant peu mobilisables. Les muscles fermant le bec sont parmi les plus puissants du corps.

<table>
<thead>
<tr>
<th>SYSTÈME ET FONCTION</th>
<th>NOM DU MUSCLE</th>
</tr>
</thead>
</table>
| MUSCLES OCULAIRES – MOUVEMENT DES YEUX | Droit supérieur
Droit inférieur
Droit médian
oblique supérieur
Oblique inférieur |
| RELEVEMENT DE LA MANDIBULE INFÉRIEURE | Pseudotemporal
Adducteur de la mandibule
Ptérygoïdiens |
| ABAISSEMENT DE LA MANDIBULE INFÉRIEURE | Dépresseur de la mandibule |
| MOUVEMENTS DU COU | Digastrique cervical
Complexe spinal
Splénius
Droit
Long dorsalement
Fléchisseur |
| MUSCLES DE LA TRACHÉE ET DES ORGANES VOCAUX | Sterno-trachéen
Sterno-hyoïdien
Trachéo-latéral |
| FERMETURE DU PHARYNX ET DU LARYNX LORS DE LA DEGLUTITION | Cératoglosse
Hypoglosse
Mésoglosse
Dilatateur
Constricteur
Crico-hyoïdien |
| MUSCLES DU SYRINGE | Broncho-trachéen
Syringien
Vocal
Oblique |

Tableau 3 : Les principaux muscles de la tête et du cou, selon Z. Veselovsky

Nous retrouverons ces muscles détaillés dans leurs insertions, terminaisons, fonction, innervation et vascularisation dans les Annexes 4 et 9. Nous nous contenterons donc ici de visualiser les différents muscles pré-cités à l'aide de différentes figures.
1-1. Muscles oculaires

Figure 81 : Muscles de l’œil en vue latérale droite
Selon F.W. Chamberlain
Figure 82 : Muscles de l’œil en vue ventrale et latérale
Selon F.W. Chamberlain

147. Muscle orbiculaire de l’œil
149. M. abaisseur de la paupière
151. M. oblique ventral
156. M. carré
157. M. pyramidal
B. Nerf optique

M. élévateur dorsal de la paupière

Méat acoustique externe et membrae otique
1-2. Muscles du relèvement et de l'abaissement de la mandibule

Figure 83 : Muscles de la mandibule et de la tête de la Poule
Selon F.W. Chamberlain
1-3. Muscles du cou

Figure 84 : Muscles cutanés du cou
Selon F.W. Chamberlain
Figure 85: Muscles profonds et superficiels du cou

Selon F.W. Chamberlain
1-4. Muscles de la trachée, des organes vocaux et muscles de la syrinx

Figure 86 : Muscles du larynx du Dindon
Selon V. Ghetie

Figure 87 : Larynx de l’Oie et ses muscles intrinsèques
Selon V. Ghetie
Figure 88 : Muscles de la trachée de l'Oie
Selon V. Ghetie
1-5. Muscles de la fermeture du pharynx et du larynx

(Voir aussi Figure 87)

Figure 89 : Muscles intrinsèques de l'os hyoïde
Selon F.W. Chamberlain
2. Le dos et le tronc

<table>
<thead>
<tr>
<th>SYSTÈME ET FONCTION</th>
<th>NOM DU MUSCLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSCLES INTERCOSTAUX (respiratoires)</td>
<td>Intercostaux externes</td>
</tr>
<tr>
<td></td>
<td>Intercostaux internes</td>
</tr>
<tr>
<td></td>
<td>Sterno-costal</td>
</tr>
<tr>
<td></td>
<td>Costoseptal</td>
</tr>
<tr>
<td></td>
<td>Élévateur des côtes</td>
</tr>
<tr>
<td></td>
<td>Scalène</td>
</tr>
<tr>
<td>MUSCLES ABDOMINAUX</td>
<td>Oblique de l'abdomen</td>
</tr>
<tr>
<td></td>
<td>Transverse de l'abdomen</td>
</tr>
<tr>
<td></td>
<td>Droit de l'abdomen</td>
</tr>
<tr>
<td>MUSCLES DES VERTEBRES THORACIQUES</td>
<td>Ilio-costal</td>
</tr>
<tr>
<td></td>
<td>Grand dorsal</td>
</tr>
<tr>
<td>MUSCLES DE LA QUEUE</td>
<td>Elevateur de la queue</td>
</tr>
<tr>
<td></td>
<td>Abaisseur de la queue</td>
</tr>
<tr>
<td></td>
<td>Latéral de la queue</td>
</tr>
<tr>
<td></td>
<td>Pubi-caudal</td>
</tr>
<tr>
<td></td>
<td>Caudo-fémoral</td>
</tr>
<tr>
<td>MUSCLES ACTIONNANT LES RECTRICES</td>
<td>Adducteur des rectrices</td>
</tr>
</tbody>
</table>

Tableau 4 : Les principaux muscles du tronc et de la queue, selon Z. Veselovsky

2-1. Muscles du thorax, du dos et de l'abdomen

![Figure 90: Muscles cutanés du tronc](image)
Selon F.W. Chamberlain
Figure 91 : Muscles superficiels du thorax

Selon F.W. Chamberlain
Figure 92 : Muscles de l'abdomen et du thorax
Selon F.W. Chamberlain
Figure 93 : Muscles profonds du dos et du thorax

Selon F.W. Chamberlain
Figure 94 : Muscles de la queue de la Poule

Selon V. Ghetie
Figure 95 : Muscles de la queue de la Poule et du Dindon
Selon V. Ghetie
3. La ceinture pectorale et les ailes

Chez les oiseaux, les muscles les plus gros sont les muscles pectoraux, actionnant les ailes. Ils peuvent représenter jusqu'à 15% du poids de l'oiseau et même jusqu'à 35% chez les espèces volant très bien, comme les pigeons (Z. Veselovsky). Le muscle le plus puissant est le muscle grand pectoral ou pectoral profond. Son rôle est d'abaisser l'aile. Sous lui se trouve le muscle pectoral moyen ou supracoracoïde. Comme il se situe sous l'aile, son tendon très solide passe par le foramen triosseum à la jonction de la clavicule, de l'omoplate et du coracoïde, le contournant pour s'insérer à la face supérieure de l'humérus (Figure 96). Le muscle supracoracoïde négale que 10% du poids du grand pectoral chez la plupart des oiseaux (Z. Veselovsky). Trouvons ensuite ci-après un tableau des principaux muscles de l'aile et des figures les représentant. Référons-nous à l'Annexe 5 pour plus de détails concernant ces muscles.

<table>
<thead>
<tr>
<th>SYSTEME ET FONCTION</th>
<th>NOM DU MUSCLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABAISSEMENT DES AILES</td>
<td>Grand pectoral ou pectoral profond</td>
</tr>
<tr>
<td></td>
<td>Petit pectoral u pectoral superficiel</td>
</tr>
<tr>
<td>RELEVEMENT DES AILES</td>
<td>Supracoracoïde = pectoral moyen</td>
</tr>
<tr>
<td>TRACTION DES AILES VERS L'AVANT</td>
<td>Rhomboïde</td>
</tr>
<tr>
<td>TRACTION DES AILES VERS L'ARRIERE</td>
<td>Grand dorsal</td>
</tr>
<tr>
<td>EXTENSEURS ET FLECHISSEURS DU BRAS</td>
<td>Triceps</td>
</tr>
<tr>
<td></td>
<td>Biceps</td>
</tr>
<tr>
<td>EXTENSEURS ET FLECHISSEURS DE LA MAIN</td>
<td>Extenseur de la main</td>
</tr>
<tr>
<td></td>
<td>Extenseurs des doigts</td>
</tr>
<tr>
<td></td>
<td>Fléchisseur de la main</td>
</tr>
<tr>
<td></td>
<td>Fléchisseurs des doigts</td>
</tr>
<tr>
<td>MUSCLES ACTIONNANT L'EXTREMITÉ DES AILES</td>
<td>Interosseux</td>
</tr>
<tr>
<td>EXTENSEURS ET FLECHISSEURS DES DOIGTS</td>
<td>Abducteur du pouce</td>
</tr>
<tr>
<td></td>
<td>Extenseur du pouce</td>
</tr>
<tr>
<td></td>
<td>Abducteur du médius (doigt III)</td>
</tr>
<tr>
<td></td>
<td>Fléchisseur du pouce</td>
</tr>
<tr>
<td></td>
<td>Fléchisseur du petit doigt (doigt IV)</td>
</tr>
<tr>
<td>MUSCLES ACTIONNANT LES REMIGES SECONDAIRES</td>
<td>Extenseur des secondaires ou expanseur des secondaires</td>
</tr>
</tbody>
</table>

Tableau 5 : Les principaux muscles du membre pectoral, selon Z. Veselovsky
Figure 96 : Muscles actionnant l'aile

Selon Z. Veselovsky

Le grand pectoral abaisse l'aile (1), tandis que le moyen pectoral la relève (2).

Figure 97 : Muscles pectoraux profonds

Selon F.W. Chamberlain
Figure 98 : Muscles pectoraux, plan superficiel
Selon F.W. Chamberlain
Membre pectoral, vue ventrale :
11. M. expansor secondaire
12. M. patagien long
13. M. patagien court
14. M. patagien accessoire
15. M. extenseur radial du carpe
17. 18. Mm. pronateurs long et court
19. M. extenseur oblique du carpe
20. M. extenseur médian des doigts II et III
21. M. extenseur et adducteur des doigts II et III
22. M. fléchisseur radial du carpe
29. M. triceps, chefs long, médial et latéral
49. M. pectoral superficial
51. M. biceps brachial
A. Veine basilique
B. Nerf ulnaire
C. Nerf médian

Selon F.W. Chamberlain
Figure 100 : Muscles superficiels de l’aile (deuxième plan) Selon F.W. Chamberlain

Membre pectoral, vue ventrale :
12. M. patagien long
13. M. patagien court
14. M. patagien accessoire
15. M. extenseur radial du carpe
16. M. extenseur ulnaire du carpe
17. 18. Mm. pronateurs long et court
19. M. extenseur oblique du carpe
20. M. extenseur médian des doigts II et III
23. M. anconé médial
25. M. fléchisseur court du doigt III
26. M. fléchisseur court du doigt IV
27. M. interosseux ventral
29. M. triceps brachial
49. M. pectoral superficial
50. M. pectoral profond (subclavier)
51. M. biceps brachial
53. M. Coracobrachial ventral
Figure 101 : Muscles profonds de l'aile (premier plan) Selon F.W. Chamberlain
Figure 102 : Muscles profonds de l'aile (second plan) Selon F.W. Chamberlain

Membre pectoral, vue dorsale :
24. M. fléchisseur et abducteur du doigt IV
35. M. supinateur médial
37. M. extenseur du doigt III
38. Idem
39. M. fléchisseur long du doigt IV
53. M. coracobrachial ventral
57. M. subscapulaire minor
58. A. Nerve médian
Figure 103 : Muscles profonds de l’aile (troisième plan) Selon F.W. Chamberlain
Figure 104 : Muscles profonds de l'aile (dernier plan) Selon F.W. Chamberlain
4. Muscles du bassin et du membre pelvien

4-1. Muscles du bassin et de la cuisse

La musculature des pattes est particulièrement développée chez les oiseaux coureurs. La structure des pattes est semblable à celle des pattes postérieures des autres vertébrés. Néanmoins elle présente une adaptation particulière du jeu des muscles extenseurs et fléchisseurs : lorsqu’un oiseau se pose, les doigts se referment automatiquement. Ce mécanisme, économique en énergie, est dû au tendon du muscle fléchisseur des doigts qui possède des excroissances et un fourreau (Figure 105). Dès que les articulations se replient sous le poids du corps, les excroissances du tendon se logent dans les cannelures de son fourreau et cela empêche l’oiseau de tomber lorsqu’il dort (Z. Veselovsky). Voici ci-dessous les principaux muscles des pattes ainsi que des figures les représentant. Nous nous référerons à l’Annexe 6 pour plus de détails.

<table>
<thead>
<tr>
<th>SYSTEUME ET FONCTION</th>
<th>NOM DU MUSCLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOUVEMENT DES JAMBES D'AVANT EN ARRIERE</td>
<td>Fessier moyen</td>
</tr>
<tr>
<td></td>
<td>Ilio-tibial</td>
</tr>
<tr>
<td></td>
<td>Tibio-fémoral</td>
</tr>
<tr>
<td>MUSCLES DE LA CUISSE</td>
<td>Ilio-fibulien</td>
</tr>
<tr>
<td>FLECHISSEURS ET EXTENSEUR DES DOIGTS</td>
<td>Extenseur long des doigts</td>
</tr>
<tr>
<td></td>
<td>Fléchisseur perforant</td>
</tr>
<tr>
<td></td>
<td>Fléchisseur perforé</td>
</tr>
</tbody>
</table>

Tableau 6 : Les principaux muscles des pattes, selon Z. Veselovsky

![Figure 105: Système de fermeture automatique des doigts](image)

Selon Z. Veselovsky
Figure 106 : Muscles superficiels de la cuisse et du dos
Selon F.W. Chamberlain

Vue latérale droite du tronc :
46. M. trapèze
54A. M. sternocoracoide
59. M. sartorius
60. M. tenseur du fascia lata
61. M. biceps démoral
62. M. semi-mebraneux
63. M. semi-tendineux
77. M. gastrocnémien
79. M. fléchisseur perforant et perforé du doigt III
88. M. long péronier
Figure 2 :
Figure 108 : Muscles profonds de la cuisse et du bassin

Selon F.W. Chamberlain

Vue latérale droite de la cuisse :
59. M. sartorius
62. M. semi-membraneux
63. M. semi-tendineux
64. M. quadriceps (droit de la cuisse)
65. M. glutéal superficial
67. M. glutéal profond
68. M. carré fémoral
69. M. coccygien caudal
77. M. gastrocnémien
79. M. fléchisseur perforant et perforé du doigt III
88. M. long péronier
A. Veine fémorale
B. Nerf ischiatique
C. Nerf péronier
D. Artère hypogastrique
Figure 109 : Muscles profonds de la cuisse et du bassin (second plan) Selon F.W. Chamberlain

Vue latérale de la cuisse :
59. M. sartorius
62. M. semi-membraneux
63. M. semi-tendineux
64. M. quadriceps, vaste latéral
70. M. gracile
75. M. adducteur
76. M. pectiné
77. M. gastrocnémien
79. M. fléchisseur perforant et perforé du doigt III
88. M. long péronier
A. Veine fémorale
B. Nerf ischiatique
C. Nerf péronier
D. Artère hypogastrique
Figure 110 : Muscles les plus profonds de la cuisse et du bassin

Selon F.W. Chamberlain
4-2. Muscles de la jambe et de orteils

Figure 111 : Muscles superficiels de la jambe, vue dorsale Selon F.W. Chamberlain
Figure 112 : Muscles de la jambe (second plan), vue dorsale Selon F.W. Chamberlain
Figure 113 : Muscles profonds de la jambe, vue dorsale Selon F.W. Chamberlain
Figure 114 : Muscles de la jambe, vue latérale droite

Selon F.W. Chamberlain

- 105 -
Figure 115: Muscles de la jambe (plan moyen), vue latérale droite

Selon F.W. Chamberlain
Figure 116 : Muscles profonds de la jambe, vue latérale droite

Selon F.W. Chamberlain
Figure 117 : Muscles de la cuisse et de la jambe en vue médiale

Selon F.W. Chamberlain

Vue médiale de la cuisse et de la jambe :
59. M. sartorius
62. M semi-membraneux
63. M. semi-tendineux
64. M. quadriceps fémoral (vaste médial)
74. M. gracile
75. M. adducteur
76. M. pectiné
77. M. gastrocnémien
Figure 118 : Muscles de la jambe en vue médiale Selon F.W. Chamberlain

Vue médiale de la jambe :
59. M. sartorius
64. M. quadriceps fémoral (vaste latéral)
74. M. gracile
75. M. adducteur
76. M. pectiné
77. M. gastrocnémien
88. M. long péronier
89. M. tibial crânial
90. M. long extenseur des doigts
Figure 119 : Muscles profonds de la jambe (premier plan), vue médiale

Selon F.W. Chamberlain
Figure 120 : Muscles les plus profonds de la jambe, vue médiale

Selon F. W. Chamberlain
Figure 121 : Muscles de la jambe, vue plantaire

Selon F.W. Chamberlain
Figure 122: Muscles de la jambe (second plan), vue plantaire

Selon F.W. Chamberlain
Figure 123 : Muscles les plus profonds de la jambe, vue plantaire

Selon F.W. Chamberlain
D) Système cardio-vasculaire

Chez les oiseaux, l'organisation particulière du système respiratoire, la présence d'air en nature dans certaines cellules du corps, notamment cutanées et osseuses, dans les os pneumatiques et autour des organes dans les sacs aériens fait que le sang absorbe une quantité phénoménale d'oxygène. Le métabolisme est donc plus rapide et plus intense, les oiseaux dépensent plus de calories que les mammifères dans leur quête de nourriture et la digestion est plus active. Tous ces paramètres font que le sang est plus rouge car plus riche en érythrocytes, il est donc éminemment plus chaud (entre 40 et 41,5°C). Tous ces paramètres confèrent aux oiseaux une grande vitalité et un potentiel de cicatrisation donc beaucoup plus rapide que chez les vertébrés.

Figure 124 : Les différents organes des oiseaux Selon Z. Veselovsky
1. Anatomie du cœur

Le cœur des oiseaux a la même conformation extérieure que les Mammifères (Figure 125). Il est de forme conique, possède quatre cavités : les oreillettes droite et gauche et les ventricules droit et gauche. Comme chez les Mammifères, le sang veineux ne se mélançe jamais au sang artériel, grâce à la conformation des vaisseaux et celle du cœur. Le sang « désoxygéné » provenant de tout le corps arrive dans l'oreillette droite par les veines cava supérieure et inférieure, puis passe dans le ventricule droit. La veine cave supérieure rapporte le sang de la tête, du cou et des ailes, tandis que la veine cave inférieure ramène le sang des pattes, de la queue et de l'abdomen. Dans cette dernière aboutit la veine coccygéo-mésentérique qui, via les veines portes, dirige le flux sanguin du foie aux reins. La contraction du ventricule droit chasse ensuite le sang vers les poumons via l'artère pulmonaire. Ici, le sang se charge en oxygène et se débarrasse du gaz carbonique, puis retourne au cœur dans l'oreillette gauche par la veine pulmonaire. Le sang est ensuite chassé dans le ventricule gauche, qui l'envoie dans tout le corps par l'artère aorte. Chez les oiseaux, au lieu de la présence de la valvule tricuspide entre oreillette et ventricule droits, il y a une cloison musculeuse (Figure 126). Les veines pulmonaires droite et gauche sont reliées en une seule veine (Z. Veselovsky).

Chez les oiseaux, le cœur est situé au milieu du corps, logé entre les deux lobes du foie et protégé par le sternum (Figure 124). Le cœur est relativement plus gros que celui des Mammifères : il est plus gros chez les espèces de petite taille et chez les mâles (Tableau 7).
Le système électrique permettant les contractions cardiaques est sensiblement le même que chez les Mammifères (*Figure 127*). Rappelons que c'est le transfert d'ions en potassium et sodium dans les cellules qui donne naissance à une impulsion électrique, transmise aux muscles cardiaques provoquant la contraction des oreillettes et des ventricules. Le cœur est, comme les autres organes, innervé par le système nerveux autonome (SNA). Les nerfs sympathiques augmentent le rythme cardiaque alors que les nerfs parasympathiques le ralentissent. Les hormones des glandes surrénales ont un effet similaire et interviennent dans les situations de stress (système angiotensine-aldostérone).

La fréquence cardiaque moyenne est de 110 battements par minute au repos. Néanmoins, il est augmenté chez les oiseaux de petite taille ou en cas de peur ou d'effort. Il n'existe donc (à ce jour) aucune donnée quant au rythme cardiaque précis des Rapaces (*Tableau 8*). On peut cependant dire que chez beaucoup d'espèces, le rythme cardiaque est coordonné avec le battement des ailes. Chez certains, le rapport est de 1 battement cardiaque pour 1 battement d'aile. Le rythme cardiaque est également coordonné au rythme respiratoire dans un rapport de 4 battements cardiaques pour 1 respiration au repos.

La pression cardiaque est plus élevée chez les oiseaux que chez les Mammifères. La valeur haute varie de 135 à 400mg de mercure (contre 120 chez l'Homme) et la valeur basse varie de 80 à 120mg de mercure (contre 80 chez l'Homme).

<table>
<thead>
<tr>
<th>Espèce</th>
<th>Poids (en g)</th>
<th>Nombre de battements (par minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autruche</td>
<td>150000</td>
<td>38</td>
</tr>
<tr>
<td>Oie cendrée</td>
<td>3200</td>
<td>113</td>
</tr>
<tr>
<td>Urubu à tête rouge (espèce de vautour)</td>
<td>2000</td>
<td>132</td>
</tr>
<tr>
<td>Pigeon biset</td>
<td>382</td>
<td>166</td>
</tr>
<tr>
<td>Moineau domestique</td>
<td>28</td>
<td>350</td>
</tr>
<tr>
<td>Mésange boréale</td>
<td>12</td>
<td>480</td>
</tr>
</tbody>
</table>

Tableau 8 : Rythme cardiaque au repos, selon Z. Veselovsky
2. Organisation de l'appareil circulatoire

2-1. Système artériel

Les vaisseaux sont plus forts chez les oiseaux que chez les Mammifères. Les artères sont plus volumineuses que les veines et sont recouvertes d'un tissu conjonctif robuste. L'organisation du système circulatoire est semblable à celle des Mammifères (*Figure 128*), la différence principale étant que l'aorte des oiseaux tourne à droite, là où celle des Mammifères tourne à gauche. Dans la première partie de l'aorte naît l'artère coronaire, approvisionnant le cœur en sang. De la courbure de l'aorte ou crosse aortique naît l'artère brachio-céphalique, dont les branches vascularisent la moitié droite de la tête et du cou et l'aile droite. De cette artère aorte partent aussi les artères sous-clavière et carotide gauches. Les carotides droite et gauche présentent chez beaucoup d'espèces des capillaires sanguins les reliant entre elles afin d'éviter l'interruption de la circulation sanguine lorsque le cou est tourné brusquement. Pour le reste des artères, elles suivent les rayons osseux et sont proches des articulations, dans un soucis d'efficacité et de protection (*Figure 129 et 130*).
Figure 129 : Système artériel des oiseaux

1. Artère carotide commune
2. Artère vertébrale
3. Artère
4. Artère subclavière
5. Artère sterno-claviculaire
6. Artère axillaire
7. A. thoracique externe dorsale
8. A. thoracique externe ventrale
9. Artère thoracique interne
10. Aorte
11. Aorte descendante
12. Artères intercostales

13. Artère cœliaque
14. Artère mésentérique caudale
15. A. mésentérique caudale
16. Artère iliaque externe
17. Artère iliaque
18. Artère fémorale caudale
19. Artère fémorale interne
20. Artère fémorale crâniale
21. Artère iliaque interne
22. Artère sacrée médiane

A. Reins
B. Ovaires
C. Glande thyroïde

Dessin personnel
2.2. Système veineux

Le système veineux suit globalement le trajet du système artériel. L’organisation est sensiblement la même que chez les mammifères domestiques avec un système porte allant au foie (Figure 131).
Figure 131 : Système veineux des oiseaux

Dessin personnel
2-3. Système lymphatique

L'appareil lymphatique comprenant la lymphe, les ganglions lymphatiques, le thymus, la rate et chez l'oisillon, la bourse de Fabricius. Les capillaires lymphatiques se regroupent en vaisseaux, aboutissant dans des conduits larges se jetant dans les veines. L'appareil lymphatique est moins développé chez les Oiseaux que chez les Mammifères. On trouve cependant chez tous les oiseaux des nœuds lymphatiques centraux, proches du cœur et des lombaires (Figure 132).

2.4. Le sang

Le sang représente 3 à 13% du poids du corps selon les espèces. Il est composé de 55% de plasma pour 45% de corpuscules. Chez les oiseaux plongeurs et ceux volant en haute altitude, le volume total de ces corpuscules est plus élevé. Les globules rouges des Oiseaux sont plus ovoïdes que ceux des Mammifères et possèdent un noyau cellulaire. En raison du métabolisme rapide des oiseaux, la durée de vie des globules rouges est brève : environ 30 jours contre 100 à 120 chez l'Homme. Le principal composant des globules rouges est l'hémoglobine, dont la quantité varie selon l'altitude à laquelle évolue l'oiseau. Les connaissances actuelles permettent de supposer que les oiseaux possèdent plusieurs types d'hémoglobine (Z. Veselovsky). Les globules rouges sont formés par la moelle osseuse, et, dans une moindre mesure, par la rate et le foie. Ces caractéristiques sanguines apportent une explication quant au phénomène de cicatrisation rapide des oiseaux.

Les globules blancs sont responsables de la défense de l'organisme contre les maladies. Ils sont formés dans la moelle et mûrissent dans le thymus et la bourse de Fabricius, qui équivaut à un second thymus.
E) Système respiratoire

1. Cavités nasales

Les cavités nasales des oiseaux ont une forme de cône arrondi. Leurs limites osseuses se font grâce au processus nasal de l’os prémaxillaire dorsalement, aux os lacrymal et nasal latéralement et dorsalement et aux os palatin et vomer ventralement (Figures 133 et 134). La charpente osseuse des narines est constituée par l’os prémaxillaire et l’os nasal. Leur forme et leur orientation sont variables selon les espèces. Elles sont grandes, allongées, ovoïdo-triangles chez les Rapaces.

En région postérieure du palais, les cavités nasales sont en communication permanente avec la cavité buccale par la fente choanale. C’est une fente médiane, allongée, étroite à sa terminaison apicale puis élargie vers l’arrière. L’air inhalé passe par les cavités nasales puis pénètre dans le larynx via cette fente. Les cavités nasales droite et gauche sont séparées l’une de l’autre par un septum nasal cartilagineux (incomplet chez les oiseaux aquatiques) qui est en continuité avec l’ethmoïde. Ce dernier comporte des diverticules (Figure 133) : il contient 3 cornets, fines lamelles de cartilage recouvertes d’une muqueuse, qui délimitent 3 compartiments communiquant librement :
- le vestibule, rostralement, contient le cornet ventral,
- le compartiment respiratoire, intermédiaire, porte le cornet moyen qui est le plus développé,
- le compartiment olfactif loge le cornet caudal dont l’intérieur n’est pas connecté à la cavité nasale mais au sinus infra-orbitaire.

Les Oiseaux peuvent respirer autant par le bec que par les narines.

Figure 133 : Fosses nasales du Dindon Selon V. Ghetie
Figure 134 : Cavités nasales du Dindon
Selon V. Ghetie

Figure 135 : Section de la tête d'une buse, laissant apparaître les cavités cérébrale et cérébelleuse, nasales et le larynx
D'après Thèse Alfort
2. Le larynx

Le cartilage cricoïde est impair. Le corps, médian et ventral, est un large plateau en forme de gouttière (concave dorsalement). Il est partiellement ossifié mais son expansion rostrale, en forme de pêle, reste cartilagineuse et flexible. Les ailes droite et gauche (plateaux cricoïdes dorsaux) sont unies au corps de chaque côté par une fine bande de cartilage flexible. Le bord médial de chaque aile s’articule (articulation synoviale) à la queue du procricoïde. Le bord dorsal de l’aile est un peu plus épais, il est au contact du bord caudal du cartilage aryénoïde le long duquel il glisse.

Le cartilage procricoïde est médian, petit, dorsal, complètement ossifié chez l’adulte. En forme de virgule, le corps est rostral, la queue est caudale. Il possède des facettes latéralement et dorsalement qui s’articulent au corps des cartilages aryénoïdes droit et gauche (Figure 136).

Figure 136 : Larynx de la Poule

A. Face médiale
B. Face dorsale
C. Face ventrale
1. Cartilage thyroïde
2. Cartilage cricoïde
3. Cartilage aryénoïde
4. Cartilage procricoïde
5. Trachée
3. Trachée et syrinx

La trachée fait directement suite au larynx, elle est de forme cylindrique et sa longueur dépend de l'espèce. Située dans le plan médian dans sa portion la plus crâniale, elle passe très vite sur le côté droit du cou. Recouverte uniquement par la peau, elle est ventrale à l'oesophage, ventro-latérale aux vertèbres cervicales. Près de la base du cœur, elle se divise en 2 bronches principales.

À son extrémité inférieure, la trachée se divise en deux bronches, une gauche et une droite, aboutissant aux poumons. À leur embranchement se trouve la syrinx, ou larynx caudal, organe vocal des oiseaux (Figure 137).

4. Poumons et sacs aériens

L'appareil respiratoire des oiseaux possède une organisation unique parmi les vertébrés. Il s'agit d'une adaptation spécifique au vol. Contrairement aux autres vertébrés, il n'y a pas d'échanges gazeux par la peau chez les oiseaux, dû au plumage.

Les poumons des oiseaux sont très petits par rapport au reste du corps, non divisés en lobe et de forme plutôt carrée à rectangulaire (Figure 138). Ils présentent les marques des côtes auxquelles ils sont fermement attachés. Il n'existe donc pas d'expansion pulmonaire comme ce peut être le cas chez les Mammifères. Il n'existe pas de diaphragme, mais seulement une petite membrane séparant les poumons des autres organes, qui n'a aucun rôle dans la respiration.

Figure 137 : Syrinx des oiseaux
D'après Boué et Chanton
En pénétrant dans le poumon les deux bronches principales droite et gauche se divisent en quatre bronches secondaires, se divisant à leur tour en un réseau de petits conduits étroits d'un diamètre de 0,5 à 1mm, les parabronches (Figure 139). Ces dernières se ramifient dans toutes les directions et sont reliées entre elles. Chez les oiseaux ayant besoin de beaucoup d'oxygène s'est développé un réseau supplémentaire de parabronches, représentant 25% du volume pulmonaire. Les parabronches s'ouvrent latéralement dans des capillaires aériens qui se ramifient et se connectent les uns aux autres formant un réseau dense de 18cm² de surface par gramme de poids corporel (soit dix fois plus que chez nous). C'est à ce niveau que l'oxygène traverse la muqueuse et passe dans les capillaires sanguins, entremêlés aux aériens (Figure 140).

Figure 138 : Poumons de la Poule
Selon V. Ghetie

2. Larynx caudal (Syrinx)
3. Bronche principale droite
4. Poumon gauche (face costale)
5. Marge dorsale
6. Incisures costales
7. Muscles trachéaux
Figure 139 : Schéma de la structure du poumon des Oiseaux Selon Boué et Chanton

Figure 140 : Échanges gazeux chez les oiseaux D'après Encyclopædia microscopia
Des poumons partent des saccobronches en relation directe avec eux via des ostiums (Figure 141). Les poumons sont ainsi en relation avec tous les sacs aériens, même les plus caudaux.

Les bronches se poursuivent ensuite dans les sacs aériens. Leur nombre varient selon les espèces car les sacs d'une même paire peuvent fusionner. On les divise généralement en région (Figures 143 et 144) :
- Les sacs cervicaux, situés dans le cou ;
- Les sacs claviculaires, situés entre les deux branches de la furcule. Ils sont très souvent fusionnés en un seul sac impair, le sac interclaviculaire ;
- Dans le thorax on trouve une paire de sacs pré-thoraciques ou thoraciques antérieurs et de sacs post-thoraciques ou thoraciques postérieurs ;
- Les sacs aériens abdominaux, situés dans l'abdomen et représentant la partie la plus caudale du réseau.

Les sacs aériens sont formés d'une très fine membrane, semblable à celle d'une bulle de savon (Figure 142). Ils sont très peu vascularisés, et aucun échange gazeux n'a lieu à leur niveau.
Figure 143 : Sacs aériens des oiseaux
Selon Z. Veselovsky

Figure 144 : Sacs aériens d'un Rapace
Selon N. Fox
Les sacs aériens se prolongent dans les os et entre les organes. Ainsi, le sac aérien interclaviculaire envoie des prolongements dans l'humérus (Figure 145 et 146). Les sacs cervicaux droit et gauche envoient des diverticules aériens cervicaux autour des dernières vertèbres cervicales (Figure 146 et 147). Ces diverticules ne communiquent pas entre eux sur le plan médian.

Figure 145 : Sacs aériens du Pigeon, vue dorsale

D'après 3D Bird Anatomy

Figure 146 : Détail des sacs aériens crâniaux du Pigeon, vue crâniale

D'après 3D Bird Anatomy
Ces sacs ont plusieurs fonctions : ils servent à diminuer la friction entre les muscles et le orga
nes, à amortir les chocs, servent d'isolant thermique, peuvent être mis à disposition lors de parades nuptiales et servent de caisses de résonance lors du chant. Leur rôle principal reste cependant respiratoire, les poumons étant incapables de se gonfler. Les mouvements de la cage thoracique font entrer et sortir l'air dans les sacs et les poumons. Ainsi, l'air circule deux fois dans ces derniers, ce qui rend l'absorption d'oxygène optimale.

Le cycle respiratoire se produit en deux temps (*Figures 148, 149 et 150*). Chaque temps est composé d'une inspiration et d'une expiration. Pendant le premier temps :

- Première inspiration : l'air se dirige vers les sacs aériens thoraciques caudaux et abdominaux
- Première expiration : l'air se dirige vers les parabronches où un premier échange avec le sang se réalise.

Lors du second temps :

- Deuxième inspiration : l'air transite vers les sacs aériens thoraciques crâniaux, claviculaires et cervicaux
- Deuxième expiration : l'air sort par la trachée.
Figure 148 : Premier cycle respiratoire des oiseaux

Figure 149 : Deuxième cycle respiratoire des oiseaux
Gardons à l'esprit que les sacs aériens sont continuellement remplis d'air. Ainsi, lors de la deuxième inspiration, les sacs aériens les plus caudaux se remplissent également d'air. Il s'agit d'un cycle complexe qui permet à l'oiseau de conserver de l'air en nature en permanence.

Il n'existe aucune donnée sur la fréquence respiratoire des Rapaces, cependant lors de mes recherches, par une écoute thoracique, j'ai pu recueillir certaines données. Trouvons donc ci-après un tableau des fréquences respiratoires relatives des oiseaux manipulés dans cette étude.

<table>
<thead>
<tr>
<th>Oiseaux manipulés</th>
<th>Fréquence respiratoire mesurée (+/- état de stress)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buse Variable (Buteo buteo)</td>
<td>28 mouvements par minute</td>
</tr>
<tr>
<td>Hibou Moyen-Duc (Asio otus)</td>
<td>32 mouvements par minute</td>
</tr>
<tr>
<td>Chouette Hulotte (Strix aluco)</td>
<td>24 mouvements par minute</td>
</tr>
<tr>
<td>Faucon Crécerelle (Falco tinnunculus)</td>
<td>68 mouvements par minute</td>
</tr>
<tr>
<td>Épervier d'Europe (Accipiter nisus)</td>
<td>138 mouvements par minute (état de stress)</td>
</tr>
<tr>
<td></td>
<td>56 mouvements par minute (état détendu)</td>
</tr>
</tbody>
</table>

Tableau 9 : Les fréquences respiratoires des oiseaux manipulés lors de cette étude, données personnelles.

Figure 150 : Représentation des sacs aériens et du trajet de l'air
Selon Proctor et Lynch
F) Système digestif

1. Bec, langue et oropharynx

Le bec varie beaucoup de forme et de taille selon les espèces. Parfois, il peut même servir à identifier le sexe de l'oiseau ou son régime alimentaire. Le bec est recouvert d'un étui très dur, le rhamphotèque, composé d'épiderme kératinisé. Cette couverture très dure remplace les dents et les lèvres car le bec a un rôle sensitif dans la préhension des aliments. Les oiseaux ne mordent pas (ouf !), mais ils peuvent pincer. Les Rapaces nocturnes et certains diurnes avalent leur proie tout rond. D'autres oiseaux de proie arrachent des morceaux de chair avant de les avaler sans plus de mastication.

Le palais est dur chez tous les oiseaux. Il n'existe pas de palais mou. En son milieu, on peut observer une fente médiane et triangulaire qui communique avec les orifices internes des narines, ou choanes (Figure 151). Derrière ces dernières se trouve l'ouverture commune des trompes d'Eustache (flèche rouge), structures faisant communiquer l'oropharynx et l'oreille moyenne, permettant de maintenir une pression égale à la pression atmosphérique. Les parois de cette ouverture sont tapissées de cellules lymphatiques formant des nodules pharyngiens.

La langue est l'organe le plus remarquable de la cavité buccale. Les muscles qui sortent et rétractent la langue sont insérés sur l'os hyoïde. Les mouvements de la langue sont permis grâce à un réseau ramifié de nerfs dont certains sont sensoriels. Ils sont soit gustatifs soit tactiles et véhiculent leurs informations via des cellules sensorielles particulières.

La langue des Rapaces n'est pas particulièrement développée et possède parfois une extrémité bifide et des papilles coniques en son fond (Figures 152 et 153). Chez la Buse Variable, la langue est rendue extrêmement simple, avec une fente médiane rendant la langue concave (Figure 154). La langue, ainsi que les papilles présentes sur le plancher de la bouche servent à orienter la nourriture vers l'œsophage et éviter que la proie ne s'échappe lorsqu'elle est avalée vivante, ce qui est rarement le cas chez les rapaces diurnes qui déchiquettent leur proie afin d'avaler de petits lambeaux de chair petit à petit.

Figure 151 : Oropharynx d'un pygargue à tête blanche D'après le Dr. Scott Ford
Figure 152 : Langue du Faucon Crécerelle d'Amérique (1,5cm de long) Selon Gardner

Figure 153 : Langue de la Chouette Effraie D'après Gardner

Figure 3 : Figure 154 : Langue de la Buse Variable, notons l'entrée du larynx et de la trachée derrière elle The Raptor Center, Dr. Julia Ponder
2. L’œsophage

L’œsophage fait directement suite à la cavité buccale. Il est dorsal au cœur et à la trachée. Il est de diamètre plus grand que celui des Mammifères. Il est très extensible, composé de plis longitudinaux (Figure 155) et d’une couche musculaire lisse et épaisse. La protection de l’œsophage est assurée par la muqueuse en plusieurs couches et parfois cornée ainsi que par le mucus sécrété par les plis longitudinaux.

Il n'y a pas de vrais sphincters supérieur ou inférieur de l’œsophage. Sa partie thoracique est innervée par le nerf vague (X) et les nerfs provenant du plexus cœliaque.

L’œsophage présente une dilatation notoire : le jabot. Chez les diurnes, il s'agit d'une extension de la paroi ventrale de l’œsophage. Chez les nocturnes, il s'agit d'une dilatation fusiforme (Figure 156). Le jabot a la même structure histologique que le reste de l’œsophage. Son rôle est de stocker la nourriture pour l'emmener petit à petit vers l'estomac. Cette stratégie digestive sert à faire des « réserves » dans le cas où trouver de la nourriture s'avère difficile.

L'oiseau possédant un jabot va appuyer sur son jabot en étirant la tête vers le haut puis en repoussant le menton vers le bas.
3. L'estomac

3-1. Histologie

L'estomac est divisé en deux parties chez la majorité des oiseaux : l'estomac glandulaire et l'estomac musculaire, ou gésier.

L'estomac glandulaire, ou proventricule, est un sac allongé et peu musclé. Sa paroi intérieure est faite de crêtes longitudinales et comporte beaucoup de glandes sécrétant du mucus, visant à protéger la muqueuse stomacale des sucs digestifs. Les papilles des glandes gastriques sont organisées en tractus longitudinaux chez la Chouette et le Hibou (Figure 157). D'autres de ces glandes sécrètent de l'acide chlorhydrique et du pepsinogène, convertit sous l'action de l'acide en pepsine, principale enzyme digestive. La couche musculaire est composée d'une couche circulaire interne et une longitudinal externe. Sur la muqueuse se trouve une couche cuticulaire protectrice chez les Falconidae, la koloïne, érodée et remplacée continuellement. On peut en fait considérer que l'estomac glandulaire est une section de l'oesophage.

Le « vrai » estomac est en fait le gésier, ou estomac musculaire ou ventricule (Figure 158). Chez la majorité des oiseaux, le gésier remplace littéralement les dents. Ses parois sont composées de deux systèmes musculaires dont les contractions broient la nourriture. Chez les Rapaces il n'y a pas de digestion mécanique mais uniquement chimique grâce à un pH gastrique compris entre 2,5 et 5 chez les Chouettes Effraies et les Faucons Crécerelles. Le gésier des Rapaces diurnes est très extensible et peut ainsi tripler de volume (Figure 159).
Figure 157 : Vue rapprochée de la muqueuse du proventricule d'un Pygargue à tête blanche
The Raptor Center, Dr. Julia Ponder

Figure 158 : Muqueuse du gésier d'un Pygargue à tête blanche
The Raptor Center, Dr. Julia Ponder
3-2. Formation des pelotes

Les Rapaces ont la particularité de recracher les parties indigestes, comme les plumes, les poils, les dents, les morceaux de carapaces etc... sous la forme de pelotes de réjection. La formation se déroule dans le gésier. Les pelotes des Chouettes et des Hiboux contiennent beaucoup plus de matériel osseux comparé aux Rapaces diurnes, car leurs sucs gastriques sont moins acides que ces derniers. La première phase de formation de la pelote est brève et correspond à des contractions du ventricule. Cela permet d'extraire les liquides du matériel indigestible. Cette phase est suivie par la compaction de la pelote pendant cinq à six heures. Environ dix minutes avant que la pelote ne soit régurgitée, les contractions du ventricule augmentent en amplitude et en fréquence, ce qui repousse la pelote vers l’œsophage inférieur. Des ondes antipéristaltiques vont ensuite prendre le relais et déplacer la pelote vers l'oropharynx. Trouvons ci-après un diagramme représentant le déroulement de la formation d'une pelote de réjection.

Il est important de surveiller l’éjection de la pelote chez les rapaces car l’incapacité à produire une pelote peut indiquer un dysfonctionnement du tractus gastro-intestinal (Murray 2014). L’intervalle de temps moyen entre le repas et l’éjection chez Chouettes et les Hiboux varie entre 10 et 13 heures. L’intervalle moyen s’étend entre 19.5 et 23.5 heures chez les Buses. Les chouettes et les hiboux produisent une pelote pour chaque repas alors que les buses peuvent consommer plus d’un repas avant de rejeter une pelote.
4. Le Foie

4-1. Topographie et conformation extérieure

Le foie est formé de deux lobes, le droit étant plus grand que le gauche (Figure 162). Son poids est souvent plus élevé chez le jeune que chez l'adulte. Ainsi, le foie du jeune Faucon Crécerelle pèse 10g alors qu'une fois adulte, il n'en pèsera plus que cinq. La plus grosse partie du foie se situe dans la région du corps entourée par les côtes, mais une petite fraction de l'organe dépasse et repose sur le sternum. Chaque lobe est attaché à la paroi latérale de la cavité corporelle par un ligament. Le ligament falciforme relie le foie au péricarde et à la surface dorsale du sternum. Un foie de taille normale ne s'étend pas au-delà du sternum (Thèse Alfort).
Il est ainsi en contact avec l'apex du cœur crânialement, le ventricule et les intestins caudalement, l'œsophage, le proventricule, la rate et le duodénum dorsalement, le sternum ventralement et les sacs aériens thoraciques antérieurs latéralement (Figures 160, 161 et 163).

Au foie aboutit le système porte, ramenant le sang chargé en nutriments des intestins.

4-2. Fonctions

Le foie joue un rôle important dans le métabolisme des protéines, des glucides et des lipides. Il excrète la bile qui sera stockée dans la vésicule biliaire. La bile est composée de cholestérol et d'acide chlorhydrique, produit par l'oxydation du cholestérol. La fonction principale de cet acide est d'émulsifier les graisses afin de les rendre solubles dans l'eau, donc plus faciles à digérer. La bile s'accumule dans la vésicule biliaire qui est plus grande chez les oiseaux carnivores que chez les autres oiseaux.

Contrairement au foie des Mammifères qui produit de la bilirubine, le pigment produit par le foie des Oiseaux est la biliverdine. Les maladies hépatiques peuvent provoquer ainsi une augmentation des taux de biliverdine, aboutissant à l'émission d'urates de couleur jaune-verte ou vert-citron. Ce phénomène est qualifié de biliverdinurie (C. Pollock). Il est très irigué en sang et a une température plus élevée que les autres organes.
Il débarrasse le corps des toxines produites par l'activité de l'organisme. Chez les jeunes il produit même des globules rouges.

5. Le pancréas

Le pancréas se situe entre les duodénum ascendant et descendant (Figures 163). Il est plus grand chez les Stigiformes. Les canaux biliaires et pancréatiques aboutissent au duodénum ascendant avec parfois un canal biliaire aboutissant proche du pylore, pour qu'une partie des acides biliaires passent dans le gésier. Les canaux pancréatiques et biliaires sont parfois fusionnés en un seul (Figure 164).
6. La rate

Sa forme varie selon les espèces : la rate de la poule est sphérique, elle présente une silhouette ovale chez le pigeon, elle est plus triangulaire chez les oiseaux aquatiques (avec une surface dorsale aplatie et un bord ventral convexe). Une rate de taille normale n’est pas toujours identifiable sur les clichés, notamment chez les oiseaux de petit gabarit (Thèse Alfort).

Sa fonction principale est de produire les globules rouges. Sur un animal accueilli pour cause de traumatisme, tout signe d'anémie devra faire penser à un éclatement de la rate.

7. L'intestin

La longueur totale de l'intestin est d'environ quatre à sept fois la longueur du corps. Il est court mais de plus gros calibre chez les carnivores que chez les granivores.

La présence de gaz est plus rare chez les Oiseaux que chez les Mammifères. Les Oiseaux peuvent avaler de l'air quand ils sont stressés, mais cela aura beaucoup moins d'impact que chez le chat ou le chien par exemple (Thèse Alfort). Chez les oiseaux de proie, des particules osseuses peuvent être présentes tout le long du tube digestif, sans que cela ne soit pathologique.
L'intestin grêle se divise en trois parties, le duodénum, le jéjunum et l'iléon.

Le duodénum dessine une anse en forme de U, où il loge le pancréas (voir Figure 163). La branche descendante fait suite au pylore et est en rapport avec le lobe droit du foie et la paroi abdominale ventrale. La branche ascendante est en contact avec le jéjunum sur la droite, le cæcum gauche et l'iléon dorsalement, le testicule et l'ovaire en période de reproduction, le foie crânio-ventralement et le sac aérien abdominal gauche sur le côté gauche. Le Faucon Crécerelle possède un duodénum plus long comparativement aux autres oiseaux de proie.

Le jéjunum est le segment intestinal le plus long. Il forme chez certaines espèces des anses en double spirale dans un souci d'économie de place (Figure 165). La partie terminale du jéjunum, à sa jonction avec l'iléon, forme une boucle supra-duodénale, nommée ainsi en raison de sa proximité avec le duodénum. Le jéjunum se situe dans quart caudal droit de la cavité abdominale (voir Figure 166). Il est en rapport avec le sac aérien abdominal droit sur la droite, l'ovaire et l'oïviducte chez la femelle, les cæca, l'iléon, le duodénum ascendant et le pancréas sur la gauche et le foie ventralement.

Figure 165 : Tractus intestinal du Pygargue à tête blanche Dr. Scott Ford

L'iléon se situe à proximité de la rate. Sa jonction avec le côlon se situe au niveau de la septième vertèbre lombo-sacrée. Il est en contact avec le ventricule et le sac aérien abdominal gauche sur la gauche. Un ligament unit le mésentère de l'iléon au péritoine de la paroi droite du ventricule ou au sac aérien abdominal gauche. Le jéjunum est également en contact la rate et le duodénum ascendant ventralement et le jéjunum sur la droite.

La muqueuse de l'intestin grêle est surélevée par des villosités recouvertes d’un épithélium columnaire contenant de nombreuses cellules en gobelet. Ces villosités sont digitées et plus développées chez les rapaces que chez toute autre espèce aviaire (Houston and Cooper).

L'intestin grêle est innervé par le nerf intestinal, nerf qui n'existe que chez les Oiseaux. Il est considéré comme analogue du ganglion prévertébral des Mammifères et contient à la fois des fibres autonomes sympathiques et parasympathiques (Wade).

L'intestin grêle et e côlon sont vascularisés par les artères mésentériques caudale, crâniale et cœliaque.
7-2. Côlon et caeca

Le côlon est bref et fait la jonction entre l'iléon et le rectum par un sphincter assez mince. Il est suspendu par un court mésentère et parcourt la cavité abdominale en parallèle aux vertèbres lombo-sacrées.

Les caeca émergent à la jonction entre le côlon et le rectum. Ce sont des structures en cul-de-sac, rudimentaires de 4mm de long ou absentes chez les rapaces diurnes (Figure 167). Chez ces derniers ce sont des structures lymphoïdes qui n'ont pas de vrai rôle dans la digestion.

Chez les rapaces nocturnes au contraire, les caeca sont très développés, mesurant entre 4 et 11cm de long (Figure 168). Ils se terminent par une partie dilatée en forme d'ampoule. Elles contiennent des cellules en gobelet et des glandes sécrétrices. Des études menées par G.E. Duke, J.E. Bird, K.A. Daniels et R.W. Bertoy en 1981 ont démontré que les caeca une importance dans la conservation hydrique chez le Hibou Grand-Duc (*Bubo virginianus*). En effet, après retrait des caeca, les oiseaux boivent significativement plus d'eau que la normale au cours des 8 à 15 jours post-opératoires. Chez tous les rapaces, l'anti-péristaltisme du côlon semble également jouer un rôle dans la réabsorption d'eau (King et Mc. Lelland). L'apport sanguin des caeca est assuré par les artères cœliaque et mésentérique crâniale.

Les fientes caécas, observées chez les rapaces nocturnes, sont émises moins souvent que les fientes rectales. Ce sont des fientes sombres et molles, ne devant pas être confondues avec des fientes diarrhéiques.
8. Rectum et cloaque

Le rectum fait suite au côlon. Il se termine ensuite dans la partie coprodéale du cloaque ou coprodeum (*Figure 169*). Contrairement à celui des Mammifères, le rectum aviaire possède de nombreuses villosités aplaties et quelques cellules en gobelet. Le rectum est irrigué en sang par l'artère mésentérique caudale.

Le cloaque est la partie terminale des systèmes digestifs et uro-génital, puisque tous ces systèmes y aboutissent. Le coprodeum reçoit les fèces du tractus intestinal provenant du côlon, l'urodeum reçoit les canaux déférents chez le mâle et l'oviducte chez la femelle ainsi que les uretères. Chez le mâle, le proctodeum porte l'appareil copulateur chez les espèces qui en possèdent un (Thèse alfort). Le proctodeum loge aussi la bourse de Fabricius. Cette dernière est un élément important dans le développement du système immunitaire chez le poussin et produit des lymphocytes B.

Figure 168 : Les cæca d'une chouette
D'après la Dr. Julie Ponder, The Raptor Center
Le cloaque est innervé par le nerf intestinal, ainsi que par le plexus cloacal, émergeant du nerf pudendal ou nerf honteux (Wade). Il est vascularisé par l'artère mésentérique caudale.

9. Stratégies digestives

Les stratégies digestives des oiseaux dépendent de leur alimentation et de leur mode de chasse.

Ainsi, au sein du vaste groupe des oiseaux de proie, des différences de leur tractus gastro-intestinal sont observées (Figure 170). Chez les oiseaux dits « de poursuite », tels que les Éperviers (Accipiter nisus), les Faucons pèlerins (Falco perigrinus) et les Chouettes Effraies (Tyto alba), ont le tractus gastro-intestinal les plus léger comparativement à la taille de l’oiseau. Ces espèces ont besoin d’agilité et de vitesse pour chasser. Ainsi, leurs muscles occupent une grande place au détriment du système digestif. Leur digestion est rapide à cause à la fois de la réduction de la longueur des intestins, mais aussi de l’augmentation des ingesta. Ces oiseaux sont ainsi plus dépendants d’une nourriture hautement digestible (Barton et Houston).

Chez les oiseaux utilisant une technique dite « de fourragement », telles les Buses (Buteo) et les Chouettes Hulottes (Strix aluco), la digestion est plus lente, le tractus gastro-intestinal est donc plus volumineux et plus lourd (Barton et Houston).
Figure 170 : Différences du système digestif entre les rapaces nocturnes (à gauche) et diurnes (à droite)
G) Système uro-génital

1. Système urinaire

1-1. Généralités

Les Oiseaux ne possèdent ni vessie (sauf l'Autruche) ni urètres. Le système urinaire se limite donc aux reins et aux uretères.

Les reins sont constitués de trois lobes successifs, un crânial, un moyen et un caudal. Ils sont placés symétriquement de chaque côté de la colonne vertébrale, et s'étendent de la dernière côte à l'extrémité caudale du synsacrum. Ils sont solidement encastrés dans des dépressions situées à la face ventrale du synsacrum et des ilia, appelées fosses rénales. Les reins sont en rapport avec les sacs aériens abdominaux et leurs diverticules, qui se situent entre les deux reins et entre le synsacrum et les ilia.

Les uretères débutent aux pôles crâniaux des reins pour se terminer dans l'urodeum du cloaque.

La vascularisation des reins est particulière, surtout au niveau de leur système veineux. Il existe en effet chez eux un système porte rénal, via des veines portes rénales, s'anastomosant avec les veines iliaques (Figure 171). Les reins sont irrigués par les artères rénales crâniales, branches de l'aorte descendante et les artères rénales caudales, branches de l'artère ischiatique.

1-2. Filtration rénale et osmorégulation

Les protéines et les acides aminés dégradés produisent des sels et surtout de l'azote. Il ne peut pas être éliminé sous forme gazeuse (l'ammoniac), car celui-ci est toxique. Les Oiseaux ne peuvent pas non plus l'éliminer sous forme d'urée, car celle-ci nécessite l'absorption de beaucoup d'eau. Ainsi, l'azote est éliminé sous forme d'acide urique, insoluble et nécessitant donc peu d'eau.

Le processus de filtration rénale se déroule comme chez les Mammifères : elle met en jeu les néphrons, formés chacun d'un tubule rénal et d'un réseau de vaisseaux sanguins, le glomérule.

Une première filtration a lieu au niveau du glomérule, puis une deuxième dans le tubule où sont réabsorbés des éléments importants pour l'organisme tels que l'eau, les glucides, les acides aminés et certains sels minéraux.

2. Système reproducteur

2-1. Chez le mâle

Les deux glandes reproductrices mâles, les testicules, sont situées au niveau de la partie supérieure des reins (Figure 172). Les testicules sont formés d'un grand nombre de tubes séminifères, entourés d'un tissu fibreux. À l'intérieur de ces tubes se trouvent les cellules de Sertoli, nourrissant les spermatozoïdes et les cellules de Leydig, présentes entre les tubes, sécrètent la testostérone.

Les spermatozoïdes, comme les ovocytes, doivent subir une méiose, pour pouvoir se rassembler dans l'épididyme, corps compact situé contre le testicule. L'épididyme se prolonge par le canal déférent, qui longe l'uretère pour se diriger vers le cloaque pour finir son trajet dans l'urodeum.

Les rapaces, comme beaucoup d'Oiseaux, ne possèdent pas de pénis et l'accouplement se traduit par un rapprochement des cloaques du mâle et de la femelle.

Figure 172 : Topographie des reins et des organes reproducteurs du Pigeon mâle D'après 3D Bird Anatomy

2-3. Chez la femelle

Dans un soucis de gain de poids, la femelle ne possède qu'un seul ovaire fonctionnel, du côté gauche (Figure 173). Chez les rapaces, les femelles possèdent également un ovaire droit, mais non fonctionnel. L'ovaire est suivi de l'oviducte, canal conduisant l'œuf formé jusqu'au cloaque. Pendant la saison de reproduction, l'ovaire grossit et remplit presque toute la moitié gauche de la cavité abdominale.

La muqueuse de l'oviducte contient des muscles lisses, formés de fibres circulaires et longitudinales. Leur contraction vers le haut amènent les spermatozoïdes vers le haut lors de l'accouplement, tandis que des contractions vers le bas font descendre l'œuf.

La croissance d'un follicule a lieu en plusieurs étapes :
- la première dure plusieurs mois ;
- la seconde, durant laquelle se forme le corps jaune, dure deux mois ;
- la dernière, durant laquelle des graisses sont ajoutées au jaune dure de 7 à 11 jours.

Deux heures avant la rupture du follicule a lieu la méiose, conduisant à la formation d'un ovocyte secondaire. Sous l'action de l'hormone lutéinisante, se follicule se rompt et gagne l'oviducte, c'est l'ovulation (Z. Veselovsky).
Après la rupture d'un follicule, l'œuf est reçu dans la partie supérieure de l'oviducte, où a lieu la fécondation : le pavillon (Figure 174). Cette partie n'est pas reliée à l'ovaire. Des muscles poussent alors le pavillon près de l'ovaire pour que l’œuf ne tombe pas dans la cavité abdominale. Si cela se produit, il est réabsorbé au bout de quelques temps. Du pavillon, l’œuf migre ensuite vers la plus grande portion de l'oviducte, le magnum. De dernier possède une paroi épaisse et de nombreuses cellules sécrétrices d'albumen, le blanc d’œuf. L’œuf est ainsi au cours de son trajet peu à peu revêtu de blanc.

Le magnum se termine par l'isthme, dont la paroi sécrète des protéines riche en soufre qui recouvrent l’œuf d'une membrane coquillière, fine comme du papier. L'isthme débouche dans l'utérus dont la paroi est recouverte d'une muqueuse formant des replis où est sécrétée la membrane calcaire. Un puissant sphincter sépare l'utérus du vagin. Ce dernier a une paroi très musculeuse, permettant d'expulser l’œuf. L’œuf séjourne deux ou trois heures dans le magnum, une à deux heures dans l'isthme et vingt à vingt-six heures dans l'utérus. Quinze heures sont consacrées à la formation de sa coquille et cinq à sa coloration.

Figure 173 : Topographie des reins et des organes reproducteurs du Pigeon femelle D'après 3D Bird Anatomy
Figure 174 : Vue ventrale de l'appareil génital de la Poule

Dessin personnel
H) Systèmes endocrinien et neurologique

1. Système nerveux central

Il est composé du cerveau et de la moelle épinière. Comme chez le Mammifères, cette dernière est logée dans le canal vertébral formé par les vertèbres. Le système nerveux central est également protégé de trois membranes protectrices :
- la dure-mère, la couche la plus externe, membrane très peu extensible et en contact avec le périoste
- l'arachnoïde, située sous la dure-mère
- la pie-mère, la couche la plus inter, contenant des vaisseaux sanguins et en contact avec la moelle.
Entre la pie-mère et l'arachnoïde se situe l'espace subarachnoïdien, contenant le liquide céphalo-rachidien, provenant du quatrième ventricule du cerveau.

1-1. La moelle épinière

La moelle épinière est plus longue en région cervicale et plus courte en région thoracique. À la jonction cervico-thoracique elle forme un renflement pour former le plexus cervico-thoracique où prennent naissance les nerfs de l'aile. Elle présente un renflement similaire en région lombo-sacrée pour former le plexus lombo-sacré, où naissent les nerfs des pattes (Figure 175).

La jonction entre la moelle épinière et le tronc cérébral est beaucoup moins développée chez les Oiseaux que chez les Mammifères. Ainsi, elle est beaucoup plus autonome et est capable de coordonner des mouvements complexes comme ceux des ailes (Z. Veselovsky).

1-2. Le cerveau

Les hémisphères cérébraux sont proportionnellement moins volumineux chez l'Oiseau comparé à celui des Mammifères (Figure 175). Cependant le rapport entre la taille de l'oiseau et celle de son cerveau est dix fois plus grand chez les Oiseaux que chez les Reptiles. La taille du cerveau est limitée par la contrainte du poids, qui doit être le plus faible possible.
Dans le cerveau aviaire, une partie du cerveau primitif subsiste sous la forme du tronc cérébral, où se trouvent les centres contrôlant les fonctions respiratoires et circulatoires, mais aussi les centres de nombreux comportement instinctifs (Z. Veselovsky). Tout le long du tronc cérébral s'étend une structure particulière : le système réticulaire. Ce dernier est indispensable pour se tenir debout et pour voler. Il stimule le cerveau et maintient l'état d'éveil, d'où son autre nom : système réticulaire activateur.

Figure 176 : Les différents plexus formés par la moelle épinière chez le Pigeon

Selon N. S. Proctor et P. J. Lynch

Note : sur la légende, une erreur est présente : le plexus lombo-sacré est présenté comme « plexus brachial ».
La vue étant le sens principal, les globes oculaires, énormes, repoussent le cerveau vers l'arrière. Chez certaines espèces, notamment chez les Rapaces, le cerveau adopte une position verticale (Figure 177). Les ventricules, bien développés chez les Mammifères, sont réduits à de simples fentes.

Le bulbe rachidien, ou moelle allongée (6. sur la Figure 178), est la partie inférieure du tronc cérébral. Il fait la liaison entre la moelle épinière, en bas et le cervelet, situé en haut et dorsalement à lui, via une masse de neurones ou pont, très peu développé chez les Oiseaux. Le bulbe rachidien est continué par le cerveau moyen (5. sur la Figure 178). Ce dernier est traversé par un canal étroit reliant le troisième ventricule situé dans le diencéphale avec le quatrième ventricule, appartenant au bulbe rachidien.

Le toit du cerveau moyen (7. sur la Figure 179) est transformé dans sa partie crâniale en deux lobes optiques latéraux (3. sur la Figure 177 et 6. sur la Figure 179). Le cerveau moyen est aussi le lieu de jonction des nerfs acoustiques et olfactifs. Ce cerveau possède une grande autonomie et abrite les centres contrôlant les mouvements des yeux, du cou et de la tête et dans une moindre mesure le reste du corps.

Le diencéphale, cité précédemment, est impliqué dans la régulation des fonctions vitales. Sur son toit se trouve l'épiphyse, ou glande pinéale (plus de détails dans le chapitre Système endocrinien). Les parois latérales du diencéphale comprennent le thalamus, qui agit comme relais et centre de tri des informations sensorielles. Sur le plancher du diencéphale se trouve l'hypothalamus, lui-même directement relié à l'hypophyse (4. sur la Figure 178) ou glande pituitaire (voir le chapitre Système endocrinien). Certains centres de l'hypothalamus sont impliqués dans la thermorégulation. Grâce à sa riche vascularisation, d'autres centres la soif en fonction de l'état du sang et de la lymphe. Le centre médian de cette structure du cerveau régule également la faim. S'il est détruit, l'oiseau se laisse mourir de faim.

Le cerveau antérieur (1. sur la Figure 178) comprend les deux hémisphères cérébraux, séparés par un sillon central. Contrairement à ceux des Mammifères, ces hémisphères sont dépourvus de circonvolutions. Ils sont continués à l'avant par les bulbes olfactifs (2. sur la Figure 178 et 5. sur la Figure 179). Le cortex, ou enveloppe externe des hémisphères, est très fin. Chez les oiseaux, le rôle du cortex cérébral est assuré par les corps striés (Figure 179), qui sont très développés. Il s'agit d'alternance de matière grise et de matière blanche et joue un grand rôle dans l'analyse finale des influx sensoriels qu'ils reçoivent du diencéphale et du thalamus. Une partie des corps striés externes remplissent la fonction motrice assurée par le cortex chez les Mammifères et envoient directement des ordres moteurs à la moelle épinière. Le centre du chant est situé sur l'hémisphère gauche.
Le cervelet est très volumineux (7. sur la Figure 177 et 6. sur la Figure 178). Il est indispensable à la gestion de l’équilibre et à la coordination des mouvements. Il gouverne tous les nerfs et les connexions nerveuses indispensables au vol (Z. Veselovsky).

1-3. Système nerveux périphérique et principaux nerfs

Les nerfs crâniens font partie, malgré leur origine crânienne, au système nerveux périphérique. Ils sont formés de neurones sensoriels et moteurs, bien que certains soient exclusivement sensoriels. Chez les Oiseaux, il en existe 12 pairs comme chez les Mammifères (voir Tableau 10). Nous pouvons nous référer à la Figure 180 pour une visualisation des émergences de ces nerfs.
<table>
<thead>
<tr>
<th>Nerfs crâniens</th>
<th>Caractéristiques et fonctions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Nerfs olfactifs</td>
<td>Exclusivement sensoriels. Ils conduisent les informations provenant des récepteurs de la muqueuse olfactive jusqu'aux bulbes olfactifs.</td>
</tr>
<tr>
<td>II. Nerfs optiques</td>
<td>Les plus gros des nerfs crâniens. Essentiellement sensoriels, les neurones qui les composent ont leur corps dans la rétine. Leurs axones se réunissent en un faisceau qui constitue le nerf optique. Celui-ci entre dans le crâne par un trou situé dans le fond de l'orbite. Puis les deux nerfs optiques se croisent au niveau du chiasma optique et se dirigent dans la moitié opposée du cerveau. Les neurones aboutissent dans les lobes optiques puis continuent dans le cerveau antérieur pour une analyse finale.</td>
</tr>
<tr>
<td>III. Nerfs moteurs oculaires moyens (ou occulo-moteurs)</td>
<td>Essentiellement moteurs, ils naissent au centre du cerveau moyen et innervent les muscles des yeux, des paupières et de la pupille.</td>
</tr>
<tr>
<td>IV. Nerfs pathétiques (ou trochléaires)</td>
<td>Ils naissent dans la partie postérieure et sont composés uniquement de neurones moteurs. Ils commandent le muscle oblique supérieur de l’œil, qui fait tourner celui-ci.</td>
</tr>
<tr>
<td>V. Nerfs trijumeaux</td>
<td>Appelés ainsi car ils se composent chacun de trois branches. Ce sont les principaux nerfs sensoriels de la tête et prennent naissance dans le tronc cérébral et innervent la figure, les mâchoires, les cavités nasales, la bouche, les yeux, les glandes lacrymales et le bec. Quelques neurones moteurs contrôlent les muscles de la mâchoire.</td>
</tr>
<tr>
<td>VI. Nerfs moteurs oculaires externes (ou abducens)</td>
<td>Ils prennent naissance dans le bulbe rachidien et commandent les muscles de la troisième paupière, la membrane nictitante.</td>
</tr>
<tr>
<td>VII. Nerfs faciaux</td>
<td>Ces nerfs moteurs naissent dans le bulbe rachidien. Ils sont auxiliaires des trijumeaux et innervent les glandes salivaires.</td>
</tr>
<tr>
<td>VIII. Nerfs stato-acoustique (ou auditifs)</td>
<td>Purement sensoriels, il naissent dans le bulbe rachidien et conduisent au cerveau les informations acoustiques provenant de l'oreille, ainsi que les informations provenant de l'organe de l'équilibre.</td>
</tr>
<tr>
<td>IX. Nerfs glosso-pharyngiens</td>
<td>Il s'agit de nerfs mixtes qui prennent naissance dans le bulbe rachidien. Les neurones sensoriels apportent les informations provenant des récepteurs du goût de la langue et du pharynx, enregistrent la pression sanguine et la concentration en gaz carbonique de l'artère carotide. Leurs neurones moteurs innervent les muscles de la mâchoire et des glande de la cavité buccale et de l’œsophage.</td>
</tr>
<tr>
<td>X. Nerfs pneumogastriques (ou vagues)</td>
<td>Ce sont des nerfs mixtes issus du bulbe rachidien innervant les muscles du pharynx. Ils comprennent des neurones du système nerveux autonome qui commandent les muscles lisses des organes thoraciques et abdominaux, comme le cœur, l'estomac glandulaire, le gésier, la moitié inférieure de l’œsophage, l'intestin grêle, le foie, etc...</td>
</tr>
<tr>
<td>XI. Nerfs accessoires</td>
<td>Ce sont des nerfs moteurs innervant les muscles du cou.</td>
</tr>
<tr>
<td>XII. Nerfs hypoglosses</td>
<td>Ces nerfs moteurs naissent dans le bulbe rachidien et innervent la langue. Chez les oiseaux, ils jouent un rôle important car ils innervent également les muscles de l'organe vocal ou syrinx, méritant son nom de « nerf du chant ».</td>
</tr>
</tbody>
</table>

Tableau 10 : Les différents nerfs crâniens et leurs caractéristiques chez les Oiseaux, d’après Z. Veselovsky

Trouvons ci-après des figures illustrant les principaux nerfs de l'aile et de la patte chez le Pigeon (Selon N. S. Proctor et P. J. Lynch).
Figure 181 : Les Principaux nerfs de l’aile du Pigeon, vue ventrale (en haut) et vue dorsale (en bas)

Selon N.S. Proctor et P. J. Lynch
1-4. Système nerveux autonome

Ce système nerveux fait partie du système nerveux périphérique, mais présente une organisation particulière (Figure 183). Il assure l'équilibre interne du corps (l'homéostasie), et est involontaire. Il est constitué des deux types de neurones, sensoriels et moteurs et se divise en deux systèmes : le système sympathique et le parasympathique. Les neurones du système sympathique naissent dans la moelle épinière et en sortent pour se connecter à d'autres en formant des ganglions, disposés en chaîne le long de la colonne, ce sont les ganglions paravertébraux. Les neurones de ces ganglions innervent les muscles lisses et les parois des organes et leur principal neurotransmetteur est la noradrénaline, hormone sécrétée par les glandes surrénales. Le système nerveux sympathique intervient dans les situations où l'organisme doit être actif. Il contribue donc à la contraction des veines, dilate la pupille, augmente la pression sanguine, le volume respiratoire et la glycémie.

Figure 182 : Les principaux nerfs de la patte du Pigeon en vue latérale Selon N.S. Proctor et P.J. Lynch
Figure 183 : Système nerveux autonome du Pigeon

Selon N.S. Proctor et P. J. Lynch
Le système nerveux parasympathique est antagoniste au sympathique. Ses neurones prennent naissance dans le bulbe rachidien et contribuent à former les nerfs crâniens III, VII, IX et X. Le principal neurotransmetteur de ces neurones est l'acétylcholine. Les organes des cavités thoracique et abdominale sont innervés par les nerfs vagues (X). Le système nerveux parasympathique intervient dans les périodes d'inactivité et de sommeil ainsi que dans le renouvellement des substances de réserve. Ainsi, il diminue la pression sanguine, ralentit les rythmes respiratoire et cardiaque, contracte la pupille et accélère la digestion (Z. Veselovsky).

2. Système endocrinien

La sécrétion des hormones est en grande partie contrôlée par l'hypothalamus, par l'intermédiaire de l'hypophyse. Cette glande endocrine majeure est constituée de deux lobes (*Figure 184*). Le lobe antérieur a une structure glandulaire et le lobe postérieur, qui contient des neurones et qui est en étroit contact avec l'hypothalamus, assure la liaison entre le cerveau et l'hypophyse.

Figure 184 : Relations entre hypothalamus et hypophyse
Dessin personnel

Le lobe antérieur, ou adénohypophyse sécrète sept hormones importantes :
- l'adéno-corticotrophine, contrôlant l'activité du cortex des glandes surrénales (ACTH) ;
- la thyrotrophine, stimulant l'activité de la thyroïde (TSH) ;
- les gonadotrophines (FSH et TRH), régulant l'activité des ovaires ou des testicules ;
- l'hormone lutéinisante (LH), stimulant la production d'hormone sexuelle mâle (testostérone) ou femelle (progestérone) ;
- la prolactine (PRL), inhibant la sécrétion d'hormones par les ovaires ou les testicules, provoquant la couvaison et intervenant dans le métabolisme des glucides et la régulation osmotique ;
- l'hormone de croissance (GH) ;
- la mélanostimuline (MSH), stimulant la production de mélanine.

Le lobe antérieur sécrète aussi les endorphines.

Le lobe postérieur ne sécrète que deux hormones :
- la vasopressine ou hormone anti-diurétique (ADH), contribuant à l'économie d'eau en diminuant le flux d'urine (d'où son nom) et la filtration des liquides et augmentant la réabsorption de l'eau par les reins, la concentration de lipides, de glucose et d'hormone de croissance dans le sang. Cette hormone intervient aussi dans la formation de réserves de graisse avant la migration.
- la mésotocine (chez les Mammifères, l'ocytocine) qui stimule la contraction de l'oviducte au moment de la ponte.
Les deux lobes de l'hypophyse stimulent ou inhibent les actions des autres glandes endocrines du corps (Figure 185), selon les besoin de l'organisme.

Figure 185 : Les principales glandes endocrines chez le Pigeon

Selon N.S. Proctor et P. J. Lynch
J) Organes des sens

1. La vue

Comme chez l'Homme, la vue est le sens principal chez les oiseaux. Pourtant elle est bien plus développée chez ces derniers.

Les yeux sont plus ou moins latéraux et le globe oculaire est allongé dans le sens antéro-postérieur. On les regroupe généralement en trois types (Figure 186).

Les principaux types d’œil : plat, Cygne tuberculé (1), globuleux, Aigle royal (2), tubulaire, Grand-Duc (3).

Figure 186 : Les différents types d’œil chez les Oiseaux

Selon Z. Veselovsky
Les yeux des Oiseaux ont une organisation similaire à celui des Mammifères (Figure 187).

La sclérotique est renforcée par des osselets scléraux, formant de véritables palettes osseuses chez les Rapaces nocturnes. Ces osselets sont situés directement en arrière de la cornée.

Sous la sclérotique se trouve la choroïde, une membrane riche en vaisseaux sanguins. Dans sa partie antérieure, elle forme les corps ciliaires, prolongés par des ligaments qui soutiennent le cristallin. Les corps ciliaires produisent l'humeur aqueuse ou humeur vitreuse, liquide assurant la nutrition de la cornée et le cristallin. Les corps ciliaires contiennent également des muscles ciliaires qui modifient la forme du cristallin pour réaliser l'accommodation. Leur contraction déforment ainsi le cristallin, le rendant plus convexe.

L'iris, situé en avant des corps ciliaires, est occupé dans toute sa largeur par des fibres musculaires striées, circulaires ou obliques, à commande involontaire. L'iris est souvent de couleur jaune à orange chez les Rapaces, voire rouge chez certains.

La rétine, couche interne de l'œil, est une couche avasculaire de l'œil. Elle contient des cellules particulières : les cônes et les bâtonnets. Les bâtonnets sont des cellules sensibles à la lumière et sont plus nombreux chez les Rapaces nocturnes. Les cônes servent au contraire en plein jour et sont responsables de l'acuité visuelle. La rétine des Rapaces diurnes est composée de 80% de cônes. Chez les Oiseaux, les photorécepteurs sont répartis de manière plus régulière dans que chez l'Homme. La rétine comporte une légère dépression, la fovea, le point le plus riche en photorécepteurs, et donc là où l'acuité visuelle est la plus importante. À titre d'exemple, notre fovea contient environ 160 000 cellules sensorielles là où celle de la Buse en contient un million. Chez les Rapaces diurnes comme chez les Hirondelles ou les Sternes, il existe une seconde fovea, latérale par rapport à la première, qui est centrale (Figure 188). La fovea latérale permet aux oiseaux qui en possèdent d'avoir une vision binoculaire en trois dimensions.

Le cristallin a la forme d'une sphère légèrement aplatie. Il est plus mou chez les Oiseaux, pour permettre leur déformation lors de l'accommodation. Chez les oiseaux nocturnes, le cristallin est convexe sur ses deux faces.
Le peigne est une structure exclusive aux Oiseaux (et aux Reptiles). Il est situé là où il n'y a pas de cellules sensorielles et est ainsi appelé « point aveugle ». Le peigne est composé de vaisseaux sanguins soutenus par un réseau de fibres dérivées du nerf optique. Il contient également des cellules pigmentaires. Il est de nature plissée chez les Rapaces, et contient ainsi 16 à 18 plis chez les diurnes contre 8 chez les nocturnes.

L'œil est protégé par trois paupières : la paupière supérieure, l'inférieure et la membrane nictitante. Cette dernière se ferme latéralement, du coin inférieur de l'œil au coin extérieur. Elle est translucide, sauf chez les Rapaces nocturnes et les cincles chez lesquels elle est opaque et blanche. Le rôle de cette membrane est de protéger l'œil et est notamment très utile pour les vols en piqué. Elle sert également à nettoyer la cornée, grâce à des petites brosses présentes sur sa surface interne.

Pour fermer l'œil, les oiseaux remontent leur paupière inférieure, sauf les Rapaces nocturnes, les cincles et les perroquets, qui abaissent leur paupière supérieure.
Les Oiseaux possèdent deux glandes lacrymales par œil : une glande de Harder, dans la membrane nictitante et une petite glande lacrymale sous la paupière inférieure. Cette dernière est absente chez les manchots et certains Rapaces nocturnes.

Les Rapaces ont une acuité visuelle trois à six fois supérieure à la nôtre. La perception des mouvements est également supérieure à celle de l'Homme. Ainsi, les Oiseaux perçoivent 150 images par seconde tandis que nous n'en percevons que 20. Les Oiseaux perçoivent également des mouvements de très faible amplitude, de l'ordre de 15° par heure.

Les Oiseaux ayant pour la plupart les yeux placés sur les côtés, ils ne voient les objets que d'un œil, c'est une vision monoculaire. Les faibles mouvements indépendant des yeux leur permet d'avoir une vision binoculaire, mais elle ne couvre un angle que de 25°. Les Rapaces nocturnes, avec leurs yeux situés en avant, ont une vision binoculaire de 60 à 70°. Celle des Rapaces diurnes est comprise entre 35 et 50°.

Le champ visuel des Oiseaux est très étendu (Figure 189). Chez la Bécasse des bois, il est de 360° et de presque autant chez les Rapaces nocturnes. Les Rapaces nocturnes possèdent un champ visuel relativement restreint, qu'ils compensent avec leur faculté à effectuer une rotation de la tête à 270°.

Figure 189 : Les différents champs visuels

Selon Z. Veselovsky
2. L'ouïe et l'équilibre

L'ouïe est le deuxième sens par ordre d'importance chez les Oiseaux. Comme chez les Reptiles, les Oiseaux ne possèdent qu'une oreille interne et une oreille moyenne (H. Boué et R. Chanton). Cependant, chez les Rapaces nocturnes, un repli de peau peut être l'équivalent du pavillon, faisant défaut chez tous les Oiseaux. Il est recouvert par des plumes. Ces dernières étouffent les vibrations causées par les plumes de vol et empêchent la pénétration de particules étrangères dans l'oreille. Chez les Rapaces nocturnes, le disque facial joue un rôle interviennent dans la réception des ondes sonores. Le tympan est situé au fond d'une dépression de la peau qui est un rudiment de conduit auditif externe (H. Boué et R. Chanton).

Le tympan est la cloison entre le conduit auditif et l'oreille moyenne (Figure 190). La pression de l'air à l'intérieur est régulée par la trompe d'Eustache, communiquant avec la bouche et qui permet d'équilibrer les pressions entre l'air dans l'oreille et l'extérieur. Les vibrations sont transmises à l'oreille interne par la columelle, un os qui relie le tympan à celle-ci et qui est l'équivalent de l'étirier des Mammifères. Son autre extrémité touche la fenêtre ovale. Ainsi, le trajet des vibrations commence au tympan, puis à la columelle, puis à la fenêtre ovale.

L'oreille interne fait suite à l'oreille moyenne. C'est là qu'a lieu l'analyse des sons. C'est un labyrinthe membraneux contenu dans un labyrinthe osseux. Ce labyrinthe membraneux est composé d'une chambre ovale ou utricule et d'une chambre ronde ou saccule. Depuis l'utricule s'étendent trois canaux semi-circulaire (Figure 191), responsables de l'équilibre. Le saccule est prolongé par un court canal, la cochlée. Chez les Oiseaux, elle est droite, contrairement à celle des Mammifères. Elle est remplie d'un liquide, la périlymphe et est divisée en deux dans le sens de la longueur en une membrane basilaire séparant :
- le canal vestibulaire (au-dessus)
- du canal tympanique (en-dessous), possédant une fenêtre ronde, située sous a fenêtre ovale.
La périlymphe transmet les vibrations par les deux canaux jusqu'à la partie réceptive de l'oreille ou organe de Corti. Il se trouve dans un troisième canal, situé entre les deux autres et fermé à son extrémité. Son plancher est constitué par la membrane basilaire, dont les cils sont de trois longueurs différentes. Alors que la cochlée humaine possède 25 000 cils, celle des Oiseaux, pourtant plus petite, en possède trois fois plus.

La gamme de fréquences audibles perçues par les Oiseaux est à peu près la même que chez l'Homme (Tableau II). Une hypothèse dit que les sons graves pourraient être perçus non par l'oreille mais par des récepteurs tactiles sensibles aux vibrations.

Les oiseaux peuvent distinguer des sons distants de 1 à 2 millisecondes, contre 15 chez l'Homme. Cette aptitude facilite la localisation du son, particulièrement développée chez les Rapaces nocturnes. Par exemple, la Chouette Effraie (Figure 192) est capable de repérer avec précision une proie dans le noir le plus total.
Cette faculté n'est pas innée et les jeunes rapaces nocturnes l'acquièrent par l'apprentissage. De plus, l'asymétrie de la tête (Figure 193) et le disque facial des Rapaces nocturnes optimisent la réception des sons. Ainsi, l'aire entendant les sons venant de l'oreille droite et de l'oreille gauche est assez faible (Figure 194).

Les Oiseaux sont également capables de mémoriser les caractéristiques des chants des autres espèces.
L'équilibre est aussi géré par l'oreille interne. L'utricule, le saccule et les canaux semi-circulaires sont remplis d'endolymphe, deux fois plus dense que de l'eau. Chaque canal semi-circulaire, débutant dans l'utricule, contient des cupules gélatineuses. Le moindre mouvement provoque le déplacement de l'endolymphe, entraînant ainsi le mouvement des cupules. Elles contiennent un grand nombre de cellules ciliées reliées à des neurones. Les canaux semi-circulaires sont perpendiculaires les uns aux autres, facilitant l'enregistrement de la position de la tête et de tout le corps. Les neurones auxquels sont connectées les cellules ciliées sont eux-même reliés aux neurones des corps ciliés. Le bon fonctionnement de l'organe stato-acoustique est indispensable chez les Oiseaux, car ils possèdent un mode de locomotion particulièrement complexe.

3. L'odorat

Chacune des fosses nasales est divisée en trois chambres :
- les deux premières sont tapissées d'une muqueuse retenant les poussières et interviennent dans la thermorégulation en absorbant ou libérant la chaleur au passage de l'air ;
- la troisième est tapissée par la muqueuse olfactive, dont les récepteurs rassemblent les informations, transmises par les nerfs olfactifs jusqu'aux bulbes olfactifs.
Chez les Rapaces, ce sont les vautours qui ont l'odorat le plus développé. Certains possèdent même un organe olfactif, équivalent de l'organe de Jacobson du chien par exemple.

4. Le toucher

Les Oiseaux ne possèdent pas de terminaisons nerveuses libres dans la peau, mais des corpuscules tactiles, classés en trois types :
- Les corpuscules de Herbst, présents dans la peau, les muscles et les articulations, sont les plus nombreux. Ces corpuscules enregistrent la tension musculaire, la pression sanguine, la pression osmotique et les vibrations de l'air.
La fonction tactile est assurée par les corpuscules du bec, aussi sensible que nos doigts chez certains oiseaux. Les corpuscules de Herbst sont également très nombreux entre le tibia et le péroné, permettant de détecter les vibrations d'un perchoir. Ainsi, si on secoue une branche sur laquelle est posé un oiseau qui dort, il se réveille aussitôt. Les corpuscules sont également nombreux entre le radius et l'ulna, en contact avec les tuyaux des rémiges, enregistrant les vibrations de ces dernières. En soufflant sur les plumes de la poitrine, on déclenche un battement d'aile réflexe.

- Les corpuscules de Grandry, typiques des oiseaux d'eau, ne seront donc pas décrits ici.
- Les corpuscules de Merkel, parallèles à la surface de la peau, sont formés d'une terminaison nerveuse entourée de plusieurs couches de cellules.

5. Le goût

Le goût est un sens chimique. Les bourgeons du goût varient de forme selon l'espèce (Figure 195). Le goût est moins développé que chez les Mammifères. Cependant ils sont capables de reconnaître les substances toxiques ou indésirables. Des expériences ont montré que les Oiseaux préfèrent les substances sucrées mais évitent celles qui sont amères. D'après cette expérience ils montrent une aversion pour la quinine.

Figure 195 : Les différents bourgeons gustatifs des Oiseaux

Selon Z. Veselovsky
DEUXIEME PARTIE : LA MANIPULATION D'UN RAPACE

I. PRESENTATION DU CENTRE DE REHABILITATION DE LA FAUNE SAVAGE LE TICHODROME

Le Tichodrome est un Centre de Sauvegarde de la Faune Sauvage, fédéré à l'Union Française des Centres de Sauvegarde (UFCS), et fondé en 2005.

Un Centre de Sauvegarde répond aux législations propres à sa situation, établies par le Ministère de l'environnement. Ainsi, la détention d'animaux sauvages en captivité est régie par le code de l'environnement, articles L. 413-1 à L. 413-5 de la loi du 10 juillet 1976. Ces articles visent plusieurs objectifs :
- le respect et la préservation de la biodiversité en fixant des seuils sur le nombre de spécimens qu'une personne ou un établissement peut posséder ;
- garantir la sécurité des personnes en les préservant des blessures ou des maladies (zoonoses) ;
- s'assurer du bien-être des animaux dans les structures qui les accueillent ;
- s'assurer que les conditions d'hébergement doivent être adaptées aux caractéristiques biologiques et aux besoins physiologiques des animaux.

La détention d'une espèce protégée doit être autorisée par une autorisation de détention, obtenue auprès de la direction départementale des services vétérinaires (DDPP).

La détention d'espèces protégées sans être titulaire des autorisations requises constitue une infraction au code de l'environnement. La sanction peut être de 6 mois d'emprisonnement et 9 000€ d'amende.

Selon l'arrêté ministériel du 11 Septembre 1992, les centres de soins constituent une catégorie particulière dont l'objectif est de dispenser des soins aux animaux blessés. À ce titre les centres sont autorisés à détenir temporairement pendant la période des soins certaines espèces, notamment protégées. Ils doivent cependant bénéficier :
- d'une autorisation d'ouverture, s'effectuant sur la base d'une distinction précisée en application de l'article R. 413-14 du code de l'environnement par l'arrêté du 21 novembre 1997. Les établissements de soins aux animaux sauvages appartiennent ainsi à la « seconde catégorie » ne présentant pas de dangers ou inconvénients graves aux espèces, les milieux naturels ou la sécurité des personnes, s'ils ne détiennent pas d'espèces dangereuses. L'autorisation peut être octroyée de manière tacite au terme d'un délai de deux mois après le dépôt d'une demande si les éléments du dossier garantissent le respect des objectifs de la réglementation ;
- d'un certificat de capacité pour le responsable de l'entretien des animaux. La demande de certificat sera recevable et instruite par la DDPP à condition que le requérant justifie de conditions d'expérience et de formation définies par l'arrêté du 12 décembre 2000 modifié.

L'arrêté du 11 septembre 1992 (cf Annexe 1) relatif aux centres de sauvegarde de la faune sauvage précise les conditions de fonctionnement et les caractéristiques des installations des établissements qui pratiquent des soins aux animaux de la faune sauvage. La finalité des centres de soins est uniquement de traiter les spécimens recueillis en vue de leur réinsertion dans le milieu naturel et en aucun cas de les conserver en captivité. Le séjour de ces animaux ne doit donc être que temporaire.

Les centres de soins ne peuvent être ouverts au public. Un contact trop fréquent des spécimens soignés avec l'Homme pourrait en effet compromettre leur réinsertion dans leur milieu naturel. Concernant mes actions au sein du centre de sauvegarde Le Tichodrome, elles ont été réalisées dans le cadre d'un bénévolat. En effet, le centre compte sur des personnes bénévoles pour aider aux soins, en complément des actions des salariés.

Les différentes causes de l'arrivée des animaux sont liées :
- aux infrastructures humaines (routes, lignes électrifiées, câbles, baies vitrées, fils barbelés) ;
- au braconnage ;
- à la prédation (chats domestiques, notamment).
<table>
<thead>
<tr>
<th>Devenir</th>
<th>Nombre</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relâché</td>
<td>646</td>
<td>37,7</td>
</tr>
<tr>
<td>Mort 24H</td>
<td>345</td>
<td>20,2</td>
</tr>
<tr>
<td>Euthanasie</td>
<td>275</td>
<td>16,1</td>
</tr>
<tr>
<td>Mort >24H</td>
<td>261</td>
<td>15,2</td>
</tr>
<tr>
<td>Arrivé mort</td>
<td>76</td>
<td>4,4</td>
</tr>
<tr>
<td>En soins</td>
<td>72</td>
<td>4,2</td>
</tr>
<tr>
<td>Transféré</td>
<td>21</td>
<td>1,2</td>
</tr>
<tr>
<td>Échappé</td>
<td>6</td>
<td>0,4</td>
</tr>
<tr>
<td>Replacé au nid</td>
<td>6</td>
<td>0,4</td>
</tr>
</tbody>
</table>

II. MESURES DE SECURITE ET CONTENTION

En raison des critères anatomiques des Rapaces cités précédemment (bec, serres), il est nécessaire de prendre des mesures pour garantir sa sécurité, celle des personnes qui nous entourent et celle de l'oiseau manipulé. Il est notamment primordial de s'assurer qu'un oiseau porteur de certaines maladies ne les transmette pas aux sujets manipulés après lui, ainsi qu'aux personnes qui le manipulent s'il s'agit de zoonoses. Nous trouverons donc une liste non exhaustive des maladies touchant les Rapaces sauvages dans l'Annexe 2.

Concernant le matériel nécessaire, il est indispensable de mettre un chaperon (Figure 196) sur la tête d'un rapace diurne pour se protéger des attaques de bec. L'action du chaperon, en plongeant l'animal dans le noir, a aussi un intérêt dans la gestion du stress de l'animal. En effet, l'animal portant un chaperon paniquera moins, car ils ont tendance à devenir très stressés en peu de temps avec une respiration haletante, bec ouvert (C. Combet). La contention d'un Rapace implique également le port des gants, au moins pour la personne qui tient l'animal, afin de se protéger des serres.

Nous trouverons ci-après une liste de quelques caractéristiques de certains rapaces manipulés dans cette étude, basée sur mes propres constatations et d'après la thèse de Mme. Caroline Combet :

Pour les Rapaces diurnes :
- Le Faucon Crécerelle (Falco tinnunculus) : il peut se montrer agressif voire paniqué. Au moment de l'attraper, lorsqu'il est en carton, il peut opter pour une position de défense, quasiment sur le dos, les pattes dirigées vers la menace (Figure 197). Lorsqu'il est contenu, il peut donner des coups de bec, mais surtout son attention se porte sur le manipulateur. Sa tête bouge pour toujours garder un contact visuel (C. Combet). Selon mes observations, le Faucon Crécerelle peut parfois vocaliser lorsqu'on touche une zone douloureuse. Son cri, qui lui a valu son nom, est très aigu et est utilisé soit pour l'alerte soit en cas de panique. Plus on manipule la zone douloureuse, plus l'animal vocalise et s'installe dans une spirale de stress. Il est donc important de changer de zone afin de détourner l'attention de l'oiseau pour revenir à la zone sensible.
- La Buse Variable (Buteo buteo) : la Buse Variable peut se montrer combative aussi, mais est moins nerveuse que le Faucon Crécerelle. Elle supporte plutôt bien la manipulation, même si lorsqu'on manipule les ailes elle peut avoir tendance à battre des deux ailes pour se dégager de la contention.
- L'Épervier d'Europe (Accipiter nisus) : il est particulièrement sensible au stress et supporte mal la captivité. Certains individus peuvent en effet arrêter de s'alimenter. Ce rapace se nourrit d'oiseaux capturés en vol. Ainsi, toute lésion oculaire ou osseuse est de très mauvais pronostic (C. Combet). D'après mes observations, l'Épervier d'Europe, une fois maintenu et un chaperon mis sur sa tête, a tendance à se calmer.
Il faut qu'il soit maintenu par une personne qui en a l'habitude et que la salle soit silencieuse, encore plus que pour les autres rapaces diurnes.

Pour les rapaces nocturnes :
Il faut faire particulièrement attention aux serres, car c'est avec elles que ces rapaces mettent à mort leur proie. Les coups de bec sont rares et les manifestations de stress se font par des claquements de bec ou des sifflements. L'utilisation d'un chaperon est rare voire inutile sur les rapaces nocturnes.
- La Chouette Hulotte (*Strix aluco*) : elle a tendance à attaquer la main qui veut la saisir en manifestant son mécontentement par des claquements de bec. Lors de la manipulation, une fois calmée elle est assez coopérative. La plupart de mes manipulations ont été possibles sur des nocturnes tandis qu'elles étaient parfois impossibles sur des diurnes.
- Le Hibou Moyen-Duc (*Asio otus*) : il est très sensible au stress et refuse souvent de s'alimenter seul, aussi bien à l'intérieur qu'en volière (C. Combet). Lors des manipulations, il se montre toutefois coopératif, malgré des signes de stress (aigrettes plaquées sur la tête). Une manipulation douce et silencieuse parvient à le détendre le temps de la séance.

Lors de la contention d'un rapace, il faudra veiller à ne pas nuire à l'intégrité des plumes, car ces dernières mettent longtemps à repousser, comme nous l'avons montré au début de cette étude.
III. Examen clinique

A) Examen de la cage

L'oiseau en convalescence est placé en cage ou, pour les rapaces, en carton. Cela permet d'une part que l'oiseau ne s'agite pas et l'opacité du carton garantit la tranquillité de l'oiseau. Le fond du carton est recouvert de journal pour éviter de le souiller et est placé un perchoir et un tapis de vetrab ou de turf pour y placer la nourriture et que l'oiseau ne risque pas un podagre (voir Annexe 2). Le perchoir doit être placé perpendiculairement au long côté du carton et bien au milieu pour ne pas léser les rectrices (Figure 198). Une petite cabane pourra être placée selon l'espèce accueillie pour que l'oiseau puisse s'y réfugier. Sur le carton devra être placée une grille pour que l'oiseau ne s'en échappe pas.

Figure 198 : Schéma de l'installation d'un carton pour un Rapace

Dessin personnel
Quand l'état de l'oiseau le permet, il peut être passer en box rigide, plus grand qu'un carton, soit à l'intérieur soit à l'extérieur, avant de passer en volière. Parfois l'oiseau passe en volière sans passer par la case box.

L'utilisation d'un journal a deux intérêts : préserver le carton des souillures et pouvoir examiner les fientes de l'oiseau. En effet, ces dernières apportent des informations précieuses quant à l'état de santé de l'oiseau :
- **Biliverdinurie** : la biliverdine est le pigment biliaire principal des oiseaux. Les maladies ou dysfonctionnements hépatiques provoquent une coloration jaune-vert ou vert citron des urates. La biliverdinurie peut être confondue avec les fèces sombres émises par un animal en anorexie avancée.
- **Hématurie ou hémoglobinurie** : il s'agit de fientes rouges ou de couleur rouille (*Figure 200*), et peut révéler une intoxication au plomb, pouvant venir d'une tentative de braconnage.

Figure 199 : Hématurie chez l'oiseau Photo du Dr. I. Langlois

Figure 200 : Polyurie chez l'oiseau Photo du Dr. E. Ramsay

- **Polyurie** : elle peut être transitoire chez les les sujets stressés. Il s'agit d'une surproduction d'urates et d'urines et ne doit pas être confondue avec une diarrhée. Elle peut révéler également un dysfonctionnement rénal (*Figure 200*).
- Diarrhée : elle consiste en une modification de la consistance ou de la forme de la portion fécale des fientes (Figure 201). Elles peuvent varier de couleur selon la maladie qui atteint l'oiseau et/ou d'une atteinte parasitaire (cf Annexe 2). Il peut aussi s'agir de malabsorption ou maldigestion des aliments.

L'examen de la cage permet aussi de vérifier que le rapace régurgite bien des pelotes, ce qui garantit un bon fonctionnement du système digestif. Le comportement de l'oiseau peut être observé dans le carton pour détecter tout signe d'apathie ou de détresse.

B) Anamnèse et examen clinique de l'oiseau

1. Anamnèse

Les informations sur l'oiseau peuvent être glanées en regardant de près sa fiche de suivi (cf Annexe 3). On y trouve son jour d'arrivée au centre, les raisons de son arrivée, et un suivi de son état au quotidien, notamment le suivi de son poids, si des pelotes sont retrouvées et les restes de nourriture. On y trouve aussi des informations sur les traitements en cours ou qui lui ont été attribués.

L'anamnèse peut être complétée par des questions sur les commémoratifs de l'oiseau, que l'on peut poser à l'équipe soignante, résumées dans le tableau suivant :

<table>
<thead>
<tr>
<th>Oiseau en carton ou en box</th>
<th>Oiseau en volière</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment sont les fientes ?</td>
<td>Vole-t-il ?</td>
</tr>
<tr>
<td>Est-il perché ?</td>
<td>Si oui, comment est le vol ?</td>
</tr>
<tr>
<td>Comment est son comportement lorsqu'on l'attrape ?</td>
<td>Si non, comment essaye-t-il d'échapper aux soigneurs ?</td>
</tr>
<tr>
<td>Fait-il des pelotes ?</td>
<td></td>
</tr>
<tr>
<td>Est-il de nature stressée ?</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 13 : quelques questions complémentaires dans l'anamnèse de l'oiseau manipulés.

2. Examen clinique

Lors de la contention, il est important d'examiner l'oiseau brièvement afin de s'assurer qu'il peut être manipulé sans risques. Ainsi, il faudra vérifier l'intégrité du plumage, des yeux, des pattes, rechercher d'éventuelles blessures, et vérifier son état d'émbonpoint (Figure 202).
Il est évalué selon cinq stades qui permettent de juger de l'état d'embonpoint et de musculature de l'oiseau, en observant la carène sternelle. Elle doit être à peine saillante.

Interprétation des stades :
Stade A : très bon état corporel, bons embonpoint et de musculature ;
Stade B : état corporel correct, peu de tissus adipeux, bon état musculaire ;
Stade C : maigreur et amyotrophie ;
Stade D : cachexie.

Un déplié des ailes (Figure 203) et de brefs mouvements des pattes permettent de détecter rapidement des anomalies de tonus.

- 181 -
TROISIEME PARTIE : SOINS OSTEOPATHIQUE APPORTES A DES RAPACES SAUVAGES EN CONVALESCENCE

I. PRESENTATION DES TECHNIQUES OSTEOPATHIQUES EMPLOYEES

Plusieurs techniques ont été employées afin de rendre les corrections les plus efficaces possibles. J'ai pu remarquer lors de mes tests que les corrections directes ou en étirement musculaires augmentaient le niveau de stress de l'animal. J'ai donc pris la décision d'écarter ces modes de correction et me concentrer sur un ensemble de techniques regroupant plusieurs approches.

A) L'approche tissulaire

C'est une approche mise au point par Pierre TRICOT. Elle se base sur la communication avec les tissus selon six paramètres:
- trois paramètres subjectifs :
 - présence : c'est la mise en place physique et mentale du praticien. Il est nécessaire pour l'efficacité de la technique être présent à soi-même, ici et maintenant, être dans le moment présent afin de ne pas être parasité par les pensées ou les attentes.
 - attention : placer son attention sur la zone avec laquelle nous voulons communiquer. Cette démarche rend plus facile le fait d'être présent car elle établit une communication interactive avec les tissus.
 - intention : avec l'intention, on peut induire consciemment quelque chose dans les tissus.
- trois paramètres objectifs :
 - tension : en mettant de la tension dans le toucher, que l'on peut augmenter progressivement. Les tissus ensuite guident le praticien vers des corrections.
 - densité : c'est le fait de « rentrer » dans la structure, pour entrer en accord avec elle, permettant de de trouver un accord avec son état de matérialité. Cela suppose la déformabilité des tissus, même osseux.
 - vitesse : une fois entré en communication avec les tissus, ils vont se mettre à bouger selon une certaine vitesse qui leur est propre. Le praticien doit pouvoir les suivre sans vouloir aller trop vite ou trop lentement.

B) Les fascias

Les fascias sont une formation de tissus conjonctifs qui entourent et protègent les différents systèmes du corps, qu'ils soient myologique, angiologique, nerveux ou digestif. Ils font partie d'un réseau continu et sont reliés les uns aux autres. De la couche la plus superficielle, la peau, au plus profond des cellules, tout est interconnecté par un réseau fibrillaire. « Nous sommes un réseau fibrillaire. Tout est en continuité » (J.C. Gimberteau). Ils soulignent ainsi l'importance de traiter le corps dans sa globalité afin d'obtenir des résultats durables.

L'intégrité du système fascial est primordial pour assurer l'intégrité des systèmes qu'il soutient. En effet, il joue un rôle dans l'immunité, la vascularisation et l'intégrité des influx nerveux. Toute traction, cicatrice ou adhérence sur une des régions fasciales aura une incidence sur celles qui l'environnent directement ou à distance. On peut comparer cette vision à un t-shirt que l'on pince à un endroit, par exemple l'épaule. On remarque facilement que le t-shirt s'organise en plis jusqu'à la région du ventre. Cela est grosso modo la même chose lors d'une traction sur un fascia.

Il a été également démontré qu'une immobilisation a des conséquences sur la structure conjonctive, entrainant des pertes fonctionnelles (Les alliés de notre organisme, les fascias - ARTE). Cela est à mettre en relation avec un des principe fondamentaux de l'ostéopathie : « le mouvement, c'est la vie » et montre l'importance d'un traitement ostéopathique précoce dans les suites d'une immobilisation.

Le travail sur les fascias dans cette étude a principalement été exécuté via la technique appelée « déroulé fascial ». Cela consiste à placer son attention sur eux et suivre leur mouvement propre.
C) Le MRP

Il y a plusieurs définitions du Mouvement Respiratoire Primaire (MRP) et son origine est assez controversée. Avant sa compréhension plus élargie, ce concept a été décrit par W.G. Sutherland, comportant cinq phénomènes inter-reliés : la motilité inhérente du SNC (Système Nerveux Central), la fluctuation du LCR (Liquide céphalo-rachidien), la mobilité des membranes intracrâniennes et intraspinales, la mobilité articulaire des os du crâne et la mobilité involontaire du sacrum entre les iliaques. Sutherland décrivait le MRP comme la puissance de la marée, et le plaçait en élément le plus important et premier avec la fluctuation du LCR. Ce mouvement respiratoire s'exprime par les mouvements de la Marée. Les éléments anatomiqnes et physiologiques centranx sont ainsi des éléments clés dans l'expression et la diffusion du MRP, se répercutant ainsi dans tout le corps. Jean-Philippe Foissy le résume ainsi, à la lumière de nouvelles données scientifiques pour comprendre ce phénomène : dix à quinze milliards de cellules nerveuses forment la névroglie, partie la plus fine de tissu conjonctif que l'on connaisse à ce jour. Les cellules de la névroglie se contractent sur elles-mêmes huit à douze fois par minute. C'est cette contraction qui serait à l'origine du MRP, provoquant une onde. Cette onde est en deux temps : quand les cellules de la névroglie se contractent, les hémisphères cérébraux deviennent plus compacts, entraînant une diminution du diamètre céphalique-caudal ; lorsque les cellules s'expansent, le mécanisme inverse est observé. L'onde est répercutée dans tout l'axe crânio-sacré via les membranes de tensions réciproques. Je me suis servie du MRP soit en globalité, pour le relancer de manière générale dans tous le corps, soit pour travailler sur le crâne et pouvoir activer certaines hormones, utiles à la cicatrisation, notamment la GH (A. LE TOUZE et M. ROBERT, La cicatrisation et la cicatrice). En effet, la mobilisation individuelle des os du crâne est impossible chez l'Oiseau, hormis les os incisif et ceux formant la mandibule, du fait de leur petite taille.

D) La Force de Traction Médullaire (FTM)

Pour résumer, la force de traction médullaire est la tension physiologique qui s'installe lors de la croissance de la moelle épinière, lors du phénomène « d'ascension apparente de la moelle épinière » rendant les croissances entre la moelle épinière et le squelette du rachis différentes. Cela s'explique par l'insensibilité de la moelle épinière à l'hormone de croissance. Une tension apparaît alors, créant les courbures du rachis.

Le concept d'excès de FTM s'explique dès lors qu'une tension excessive apparaît, entraînant compensations organiques d'abord silencieuses puis des désordres adaptatifs, des déformations posturales, voire des boiteries et des symptômes nerveux.

L'excès de FTM peut également survenir lors d'un choc violent, qu'il soit physique et/ou émotionnel. Lors de choc physique, l'énergie cinétique emmagasinée dans le canal vertébral et par la moelle épinière engendre un asynchronisme du MRP entre crâne et sacrum. Associé à une FTM élevée, cela aboutit à un syndrome appelé « coup du lapin » ou « whiplash » (« coup de fouet »), entraînant de nombreuses compensations.

La FTM peut également être quasi absente lors d'une section de la moelle épinière ou « morcelée », due à des hernies discales.

J'ai trouvé intéressant de travailler sur cette FTM, d'abord car les oiseaux accueillis le sont souvent à cause de traumatismes dus à des chocs violents, et parce que le stress et la domestication sont des facteurs pouvant provoquer un excès de cette force (Patrick Chêne).

E) L'approche fluidique

Cette approche peut être également qualifiée d’approche énergétique de l'individu. Elle s'intéresse au corps énergétique et à ses perturbations. Ainsi, le corps énergétique du sujet peut être décalé par rapport au corps physique, l'énergie ne circule donc pas correctement dans les tissus.

Dans cette approche, je me suis contentée d'harmoniser le corps éthérique et le corps émotionnel, deux des six principaux corps énergétiques, ainsi que la bonne circulation des énergies cosmique et tellurique. J'ai également put « boucher » des trous énergétiques, parfois présents sur certaines zones d'un corps ou de l'autre. En faisant cela, on aide le sujet à surmonter ses traumatisms et à ce que l'énergie dont il a besoin soit mobilisable facilement.
Avant de présenter les cas cliniques en détail, trouvons ci-après un tableau récapitulatif des caractéristiques des rapaces manipulés lors de cette étude, ainsi que les causes qui les ont amenés au Centre.

<table>
<thead>
<tr>
<th>ESPECES</th>
<th>POIDS (en g)</th>
<th>ENVERGURE (en cm)</th>
<th>ALIMENTATION</th>
<th>PARTICULARITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aigle Royal (Aquila chrysaetos)</td>
<td>2840-4550</td>
<td>190-225</td>
<td>Mammifères, gros oiseaux, charognes.</td>
<td>Diurne, un des rapaces chasseurs les plus puissants.</td>
</tr>
<tr>
<td>Buse Variable (Buteo buteo)</td>
<td>550-1000</td>
<td>110-130</td>
<td>Surtout petits rongeurs, mais aussi reptiles, batraciens, insectes, vers de terre.</td>
<td>Diurne.</td>
</tr>
</tbody>
</table>

Tableau 14 : Caractéristiques des rapaces manipulés, selon le Guide Ornitho.

Les diverses causes d'arrivée des sujets sont :
- des chocs divers (cause inconnue) ;
- des collisions avec voiture ;
- des collisions avec vitre ;
- des électrisations.

Remarque : l'électrisation est une raison relativement fréquente d'arrivée des oiseaux aux centres de soins. Pour qu'une électrisation se produise, il faut une entrée et une sortie en deux endroits distincts de l'organisme. Elle peut provoquer (symptômes décrits chez l'Homme) :
- Des troubles cardio-vasculaires :
 - une ischémie myocardique ;
 - une fibrillation myocardique ;
 - un infarctus du myocarde ;

- 184 -
- une péricardite ;
- des vasospasmes et des thromboses artérielles ou veineuses, conduisant à un syndrome des loges ;

Des troubles nerveux :
- pertes de conscience, amnésie ;
- atteinte des nerfs périphériques : nerfs médian, ulnaire, radial et péronier principalement ;

Des troubles nerveux retardés :
- neuropathie périphérique, paresthésie, dysfonction cérébelleuse ;
- myélite transverse, paraplégie ;

Des brûlures :
- zones de nécrose des tissus, surtout sous la peau et peu étendues ;
- oedèmes, entraînant une augmentation de la pression et provoquant un syndrome des loges ;

Des troubles rénaux :
- insuffisance rénale aiguë (IRA) ;
- rhabdomyolyse ;

Des troubles pulmonaires et digestifs (source : NCBI).

Chez l'Oiseau, les phénomènes les plus observés sont des nécroses profondes des tissus suivant le trajet d'un « point d'entrée » vers un « point de sortie » du courant électrique. Sur des cas électrisés de façon légère, cela crée principalement des œdèmes et des nécroses peu étendues. Cela ne doit pas pour autant faire oublier qu'un organisme vivant en reste un et que tous les troubles pré-cités, mêmes s'ils sont décrits chez l'Homme, peuvent en toute hypothèse être observés chez l'Oiseau.

Note : Sur les fiches suivantes, les éléments surlignés évoquent leur importance.
A) Buse Variable 1502

Date d'arrivée : 30/09/2018
Cause : choc véhicule.
Motif de la première consultation : grosse contracture à l'aile droite constatée. Elle s'abîme les plumes à cause de ça et entre dans un cercle vicieux, l'aile se contractant de plus en plus.

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/03/2020 : Sensibilité +++ épaule et brêchet et à l'extension. 06/03/2020 : Stressée +++</td>
<td>06/03/2020 : Spasmes ++ à l'extension de l'aile D (proche épaule et membrane). Tensions aux épaules + sternum à D, associé à une latéro-F° globale D de la colonne thoracique. MRP global OK, mais FTM élevée, directement bloquée au synsacrum. Corrections : FTM, étirements doux épaule D.</td>
<td>Revoir semaine pro. □ Relâché □ Échappé □ Mort □ Euthanasié □ Encore en soins</td>
<td></td>
</tr>
</tbody>
</table>

Après prise de nouvelles par mail avec l'équipe : vole beaucoup mieux, on attend de voir si elle refait ses plumes cet été car des entures sont impossible à faire pour le moment.
B) Faucon Crécerelle 1850 (Femelle ?)

Date d'arrivée : 20/10/2019
Cause : chocs divers.

Motif de la première consultation : prise en charge des dysfonctions et tensions provoquées par la fracture de l'os du coracoïde. En effet, selon l'équipe soignante, plus tôt est prise en charge une fracture de cet os, meilleur est le pronostic.

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
<th>Notes</th>
</tr>
</thead>
</table>
| **08/11/2019 :**
Immo depuis son arrivée. Ancienne fracture R/U à droite, consolidée *(Figure 203)*, mais fracture coracoïde *(Figure 204)*. Mécano 1j./3
08/11/2019 :
Aile droite globalement en rotation externe, tensions +++ autour de l'épaule. *Corrections : Travail sur trame osseuse R/U.* |
Revoir semaine pro.
Continuer mécano 1j./3 | □ Relâché
□ Échappé
□ Mort
☒ Euthanasié
□ Encore en soins |
Notes :
Ne volait pas du tout, n'arrivait même pas à décoller, du coup l'équipe prend la décision de l'euthanasier.
Date de l'euthanasie : 10/12/2019 |
| **15/11/2019 :**
Toujours immo.
Immo enlevée le 20/10
15/11/2019 :
Sternum décalé à gauche (tensions des pectoraux), FTM élevée, F/E des ailes OK. *Corrections : FTM, sternum et épaule non travaillés car encore fracture.* |
Revoir semaine pro.
Continuer mécano j./3 en massant la membrane (cela facilite l'extension) | □ Relâché
□ Échappé
□ Mort
☒ Euthanasié
□ Encore en soins |
Notes :
Ne volait pas du tout, n'arrivait même pas à décoller, du coup l'équipe prend la décision de l'euthanasier.
Date de l'euthanasie : 10/12/2019 |
| **22/11/2019 :**
Se perche.
22/11/2019 :
Revoir semaine pro.
Continuer mécano jusqu'à passage en vol. | □ Relâché
□ Échappé
□ Mort
☒ Euthanasié
□ Encore en soins |
Notes :
Ne volait pas du tout, n'arrivait même pas à décoller, du coup l'équipe prend la décision de l'euthanasier.
Date de l'euthanasie : 10/12/2019 |
| **29/11/2019 :**
En vol. la journée, en inf. la nuit. À la mécano le poignet paraît bloqué.
29/11/2019 :
Aile D : épaule et coude OK, poignet en DO de F°, entrée de poitrine en restriction à D, cervicales OK. *Corrections : à la libération du poignet, une restriction du coude apparaît. Travail tissulaire sur l'entrée de poitrine.* |
Revoir semaine pro.
06/12/2019 : /
Aile D : membrane → nœud qui commence à se former. Entrée de poitrine et aile G OK. *Corrections : travail des fascias autour du nœud + épaule.* | □ Relâché
□ Échappé
□ Mort
☒ Euthanasié
□ Encore en soins |
Notes :
Ne volait pas du tout, n'arrivait même pas à décoller, du coup l'équipe prend la décision de l'euthanasier.
Date de l'euthanasie : 10/12/2019 |

- 187 -
Figure 204 : Radiographie de face du F.C. 1850 laissant apparaître un cal osseux sur l'ulna droit
Figure 205 : Radiographie du F.C. 1850 montrant une fracture de l’os coracoïde droit
C) Faucon Crécerelle 1888 (Femelle ?)

Date d'arrivée : 31/10/2019
Cause : chocs divers
Motif de la première consultation : Il est présenté pour un suivi des suites de fractures des os radius et ulna de l'aile gauche, avec déplacement de ces derniers. L'équipe soignante m'a décrit de gros cals osseux.

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
</table>
□ Échappé
□ Mort
☑ Euthanasié
□ Encore en soins | Notes :
Date de l'euthanasie : 28/11/2019 |

20/11/2019 : Un examen radiologique avait été fait, révélant un important cal osseux au poignet, une fusion des os radius et ulna et une fibrose partielle en partie moyenne de la membrane patagienne (voir Figure 205) Il sera impossible pour cet oiseau de voler et d'être relâché. Au vu de l'examen radiologique, la décision d'euthanasier l'oiseau a été prise.

Figure 206 : Radiographie de face du F.C. 1888 montrant une fusion des os de l'avant-bras
D) Buse Variable 1928

Date d'arrivée : 13/11/2019
Cause : chocs divers
Motif de la première consultation : séance suite à un gros choc avec divers traumatismes.

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
</table>
| **15/11/2019 :**
en inf.2. Lésion par perforation de l'œsophage (jabot) → suture en surjet, ulcère au coin de l’œil, raideur +++ des pattes et des ailes.
Nourriture : d'abord sondage puis P en mcx
Présence de méléna dans les fientes.
Rx : voir Figure 206 | **15/11/2019 :**
Tests de la mobilité des ailes → OK. Petites tensions au niveau des hanches, le reste des membres pelviens est normal. Asynchronisme crâne/sacrum + FTM élevée → **whiplash**
Corrections : FTM pour normaliser l'axe crânio-sacré et travail tissulaire sur les adhérences de la suture au jabot. | **Bien regarder l'état des fientes et regarder si elle se perche et si elle s'alimente bien.**
Revoir semaine pro. | ![Relâché] |
| 22/11/2019 :
Passée en box 40aine
Une nouvelle suture au jabot a été réalisée (8 pts de suture) car nécrose des tissus, amas de sang et amas blanc → pus ?
Sondage de NaCl pour voir si bien fermée et rien ne coule.
Nourriture : Arrêt P
→ sondage de A/D très diluée
Fientes OK et se perche. | 22/11/2019
Tests des sutures : pas encore bien cicatrisées. Encore un léger asynchronisme crâne/sacrum → whiplash
entrée de poitrine fermée : épaules en rotat° interne. Crâne en compression.
Corrections : FTM pour normaliser les dernières compensations dues au whiplash, travail sur apport sanguin de l'œsophage → cervicales, dos et entrée de poitrine. Correction du crâne globale, avec une attention particulière portée sur l'hypophyse : libération de GH, impliquée dans le processus de cicatrisation (A. Le Touze et M. Robert). | ![lors du sondage (micro irritations) Revoir semaine pro si les points sont bien cicatrisés sinon → 06/12.] |
| 06/12/2019 : En volière 44m avec d'autres buses | 06/12/2019 :
Elle vole très bien et se nourrit bien donc ne présente pas le besoin d'une nouvelle séance | / | ![Relâché] |
Figure 207 : Radiographie de la B.V. 1928 de face montrant une perforation du jabot (flèche), par la clinique
E) Chouette Hulotte 1935

Date d'arrivée : 14/11/2019
Cause : choc véhicule.
Motif de la première consultation : séance suite à un choc avec un véhicule. Au vu de l'état de ses yeux, l'hypothèse voudrait qu'elle l'ait heurté de plein fouet et de face.

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/11/2019 :</td>
<td>22/11/2019 :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29/11/2019 :</td>
<td>29/11/2019 :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est passée en volière avec d'autres chouettes, mais est ensuite passée en petite volière seule.</td>
<td>Encore un asynchronisme crâne/bassin. Entrée de poitrine en expir. *Corrections : Travail de ré-harmonisation crâne/bassin et ouverture des diaphragmes crânien et cervico-thoracique.</td>
<td>Revoir semaine pro si vole mal ou ne vole toujours pas.</td>
<td>☐ Échappé</td>
</tr>
<tr>
<td>06/12/2019 :</td>
<td>06/12/2019 :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passée en vol. 28m avec d'autres chouettes</td>
<td>Vol silencieux → pas besoin de séance</td>
<td>/</td>
<td>☐ Mort</td>
</tr>
</tbody>
</table>

Notes : Date du relâché : 10/12/2020
F) Chouette Hulotte 1957

Date d'arrivée : 20/11/2019
Cause : choc véhicule.
Motif de la première consultation :

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aile G : hématome coude,</td>
<td>Ouverture de l'aile D. douloureuse,</td>
<td>Revoir semaine pro.</td>
<td>□ Échappé</td>
</tr>
<tr>
<td>aile D : hématome humérus</td>
<td>aile G OK. Nette DO de F° du poignet</td>
<td></td>
<td>□ Mort</td>
</tr>
<tr>
<td>et scapula, n'ouvre</td>
<td>et membrane tendue +++ . Entrée de</td>
<td></td>
<td>□ Euthanasié</td>
</tr>
<tr>
<td>pas l'aile d'elle-même.</td>
<td>poitrine en expir. Pattes : nette</td>
<td></td>
<td>□ Encore en soins</td>
</tr>
<tr>
<td>28/11/2019 :</td>
<td>difficultés à étendre la patte G,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ouverture de l'aile D.</td>
<td>hanche en DO de F° et</td>
<td></td>
<td></td>
</tr>
<tr>
<td>anormale</td>
<td>glissement haut.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corrections : en stretching et</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>réalignement osseux, mobilisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>passive de la membrane avec</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>massage associé.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Passage en volière</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>possible.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Revoir semaine pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30/11/2019 :</td>
<td>06/12/2019 :</td>
<td>Revoir semaine pro</td>
<td></td>
</tr>
<tr>
<td>Passée en vol. tourne</td>
<td>Comp° cervicale à droite, membrane</td>
<td>Notes : Date du relâché : 28/12/2019</td>
<td></td>
</tr>
<tr>
<td>toujours du côté droit +</td>
<td>de l'aile D moins tendue. Ouverture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>douleur à l'extension de</td>
<td>de l'aile pas si douloureuse → résistance car reflexe de protection, stress.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l'aile</td>
<td>Tensions +++ sur les pattes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06/12/2019 : /</td>
<td>Corrections : cervicales, dos,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>entrée de poitrine et FTM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09/12/2019 :</td>
<td>13/12/2019 :</td>
<td>Revoir si continue à perdre trop de poids</td>
<td></td>
</tr>
<tr>
<td>Passée en vol. 28m avec</td>
<td>Tensions +++ des pattes, surtout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d'autres chouettes. Vole</td>
<td>autour des hanches et des genoux,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>très bien.</td>
<td>cervicales et ailes OK, foie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13/12/2019 :</td>
<td>induré, gésier en manque de</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A perdu du poids : de 552</td>
<td>motilité. Corrections : harmonisation du foie et du</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g à 524g (correspond environ</td>
<td>gésier, travail sur les tensions musculaires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>au poids d'un P).</td>
<td>des pattes en compression puis en</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>étirement.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
G) Buse Variable 1968

Date d'arrivée : 23/11/2019
Cause : choc vitre
Motif de la première consultation : séance suite à un choc de plein fouet sur une vitre ayant entraîné une perforation de l‘œsophage et plusieurs hématomes. La buse présente une aile gauche pendante.

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
</table>
Mécano 1j./3 en insistant sur l'extension de l'épaule et en réalisant des mvmts de haut en bas de l'aile.
! au moment du sondage (irritations)
Revoir semaine pro et bilan de l'aile à ce moment-là. | ☒ Relâché
☐ Échappé
☐ Mort
☐ Euthanasié
☐ Encore en soins |
| 06/12/2019 : | Points au jabot enlevés, test aucun sondage, des P mixés lui sont donnés, vue perchée | | |
| 12/12/2019 : | Passée en vol. seule, se retourne seule sur le dos et a du mal à se relever, aile G très basse, stressée +++
13/12/2019 : | **Surveiller les fientes**, **continuer mécano**, revoir semaine prochaine | |
| 17/12/2019 : | RDV vétro → / fracture, son état serait dû à une comp° nerveuse | | |
| 20/01/2020 : | | **Surveiller aile dans 3 jours, revoir si rien de mieux** | |

06/12/2019 : | | Séance du...
06/12/2019 : | | Contrairement à la précédente, cette séance ne montre aucune exubérance et la buse est particulièrement calme.
Plus de fuite énergétique au jabot. Encore légère compression de l'estomac (partie proventriculaire), membrane OK.
Corrections : travail sur esophage et cervicales + ouverture de poitrine | |

13/12/2019 : | | Travaillé sur trajets nerveux de l'aile G (n. Radial surtout), plexus brachial et entrée de poitrine + cervicales basses et dos, harmonisation épaule-coude-poignet en MRP + ré-axage énergétique : son corps énergétique était complètement à G.
Arrêt mécano (stress)
Revoir semaine pro | |

20/12/2019 : | | Émergence des n. rachidiens C13, C15, T1, n de l'aile G OK, côtes OK, travail sur trame osseuse du notarium + moelle épinière et dure-mère. | |

20/03/2020 : | | Séance par un autre ostéopathe. Ne présentait que quelques dysfonctions aux premières côtes avec des tensions autour de l'art° coraco-humérale. | |
H) Buse Variable 1973

Date d'arrivée : 24/11/2019
Cause : chocs divers.
Motif de la première consultation : très net manque de mobilité et gonflement du coude à gauche.

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
</table>
| 24/11/2019 :
coude G : œdème ++ + face int. et ext.
Mécano aile G en F/E depuis le 19/11.
27/11/2019 :
Rx aile G : luxation + arthrite ? (voir Figures 207 et 208)
17/12/2019 :
Rx du coude G, luxation pas bougée + prélèvement œdème
19/12/2019 :
La membrane commence à se rétracter | 20/12/2019 :
Coude aile G chaud, œdème encore important. La luxation ne se remet pas à la flexion du coude, l'ulna sort de l'articulation.
Thermo-argile ? | □ Relâché
□ Échappé
□ Mort
☒ Euthanasié
□ Encore en soins
Notes :
Date de l'euthanasie : 16/03/2020 |

| 04/02/2020 :
Opération → bille antibiotique mis dans l'articulation.
21/02/2020 :
Coude toujours gonflé + + + (Figure 209), utilise cependant son aile, mage et volette. | 21/02/2020 :
Motif de la consultation : essayer de drainer ce qu'il se trouve dans le coude, aider à le faire dégonfler. Grosses adhérences sur les fascias des ailes, tensions + + + épaules et cou (cervicales basses)
Corrections : harmonisation MRP général + déroulé des fascias des ailes et propres du coude → la plaie a suinté suite à cette correction. | Continuer homéo. |

| 28/02/2020 :
Énervée + +, coude toujours gonflé, spasmes musculaires proches du coude | 28/02/2020 :
Pas de fuite énergétique au niveau du coude, tensions et adhérences ++ ++ autour.
Corrections : oiseau ventriculaire + MRP et fascias des ailes. | L'homéopathie ne semble pas aider...
Ne pas revoir tant qu'il y a les points.
Avis d'un vétérinaire du centre de soins ONIRIS que l'équipe a consulté par mail sur ce cas car nous ne savions plus quoi faire : « Cette buse a un hygroma marqué consécutif à une luxation du radius associée à une fracture du condyle médial distal de l’humérus gauche et à l’apparition d'arthrose, marquée à la date de la dernière radio. L'oiseau ne pourra pas récupérer une articulation normale ni même fonctionnelle car douloureuse. Elle se débrouille en volière lorsqu'elle n'a pas à mobiliser son coude (ou peu) ce qui n'est pas le cas en phase de décollage. Je préconiserais l'euthanasie pour cet oiseau. » |

| Traitement homéopathique mis en place le
22/02/2020 : Apis Mellifica 15CH + Hepar sulfuris
15CH 1x/j, arrêté le 29/02/2020 |

- 196 -
Figure 208 : Radiographie de face de la B.V. 1973 montrant un gonflement du coude gauche

Figure 209 : Radiographie de la B.V. 1973 en vue dorsale montrant l'articulation du coude gauche
Figure 210 : Vue dorsale de l'articulation du coude de la B.V. 1973 au 21/02/2020

Photo personnelle
ANAMNESE

<table>
<thead>
<tr>
<th>Date</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>05/12/2019</td>
<td>Fientes vertes, fracture R/U proche du coude à droite (voir Figure 209)</td>
<td>Revoir semaine pro.</td>
<td>□ Relâché</td>
</tr>
<tr>
<td>26/12/2019</td>
<td>Cal osseux au radius → fracture reconsolidée, mécano depuis le 15/12/2019</td>
<td></td>
<td>□ Échappé</td>
</tr>
<tr>
<td>03/01/2020</td>
<td>En vol., porte son aile en arrière et la tient mal. Coude D enflé → arthrite ? (Figure 210) Gavé car ne mange pas.</td>
<td></td>
<td>□ Mort</td>
</tr>
<tr>
<td>10/01/2020</td>
<td>Ne s'alimente plus. A été retrouvé une patte coincée dans le filet de la vol. → repassé en box 40aine. Coude pas mieux et ne déplie pas l'aile de lui-même.</td>
<td>Chondroprotecteurs → protéger les cartilages des éventuels liquides inflammatoires présents dans l'articulation. Mécano 1j./2 Revoir semaine pro.</td>
<td>□ Euthanasié</td>
</tr>
<tr>
<td>17/01/2020</td>
<td>Massage de l'articulation au silicium 2x/j., passé en vol. le 14/01.</td>
<td></td>
<td>Traitement homéopathique mis en place le : → Apis Mellifica 5CH 2x/j le 14/02/2020. Commence à s'agiter dans son carton</td>
</tr>
<tr>
<td>24/01/2020</td>
<td>Ouvre les ailes, se perche mais ne vole pas.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes :
- Date de l'euthanasie : 25/02/2020
- Traitement homéopathique mis en place le : → Apis Mellifica 5CH 2x/j le 14/02/2020. Commence à s'agiter dans son carton
<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/01/2020: Rx → RAS 31/01/2020: Mécano 1j./2, arrêt pommade silicium, petite plaie au coude D en interne.</td>
<td>31/01/2020: Crâne et cervicales hautes comprimés, hanche gauche en compression. L'entrée de poitrine s'est refermée. Corrections: rythme de l'âme, MRP entrée de poitrine.</td>
<td>Continuer homéo + revoir semaine pro</td>
<td></td>
</tr>
<tr>
<td>14/02/2020: Bilan homéopathie : l'oedème a fortement diminué sur l'articulation (Figure 212) Les mm de l'avant-bras sont encore œdématisés. Ne vole tjs pas.</td>
<td>14/02/2020: Le MRP global de l'aile D a diminué de nouveau, corps énergétique décalé à G. FTM élevée à partir des 1ères thoraciques-dernières cervicales. Hanche D en comp°. Corrections: FTM, pulsatile radiant des structures de l'aile D. Note : plumage → beaucoup de rémiges cassées, ne pourra donc pas voler même si son état le permet.</td>
<td>Continuer homéo + revoir semaine pro.</td>
<td>Note pour la prochaine fois : travail + approfondi sur les cervicales.</td>
</tr>
<tr>
<td>21/02/2020: Demande spécifique de l'équipe soignante : travailler sur les épaules car n'ouvre pas les ailes.</td>
<td>21/02/2020: Les mêmes dysfonctions se présentent que précédemment, avec en plus une fermeture globale de l'entrée de poitrine. Corrections: oiseau ventriculaire, ouverture de poitrine, technique d'équilibration générale de l'océan.</td>
<td>Ne plus revoir. Soit attendre que les plumes se refassent, soit faire des entures (problème : pas de plumes de M.D. dispos), soit euthanasie car la captivité serait trop longue le temps de la repousse des plumes...</td>
<td></td>
</tr>
</tbody>
</table>
Figure 211 : Radiographie du M.D. 1994 montrant une fracture du radius, proche de l'articulation du coude.
Figure 212 : Coude du M.D. 1994 en vue ventrale le 17/01/2020. La tête est vers la gauche. Photo personnelle

Figure 213 : Coude du M.D. 1994 en vue ventrale le 14/02/2020. La tête est vers la gauche. Photo personnelle
J) Épervier femelle 2000

Date d'arrivée : 07/12/2019
Cause : chocs divers.
Motif de la première consultation : séance suite à une possible fracture ou luxation de l'os coracoïde. Elle a été retrouvée également atteinte de trichomonose.

<table>
<thead>
<tr>
<th>Date</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/12/2019</td>
<td>Bandage au corps.</td>
<td>27/12/2019 : Travail sur trame osseuse coraco G → épaissement pas de cal. Décalage entre le coraco et le sternum → la partie distale du coraco est entraîné vers l'avant. Corrections : travail informationnel sur le coraco G, foie et gésier (comprimés).</td>
<td>Revoir semaine pro. ! Fientes</td>
</tr>
<tr>
<td>27/12/2019</td>
<td>Protocole san. → tricho</td>
<td></td>
<td>☒ Relâché</td>
</tr>
<tr>
<td>03/01/2020</td>
<td>Rx : luxation de l'articulat° coraco-sternale + épaule ?</td>
<td>03/01/2020 : L'épaule D ressort, partie distale du coraco moins décalée vers l'avant, mais décalé vers l'intérieur. Corrections : Travail de pompage du coraco + tissulaire de l'épaule</td>
<td>Revoir semaine pro. Continuer position phy.</td>
</tr>
<tr>
<td></td>
<td>(voir Figures 213 et 214) → posit° phy + arrêt protocole san.</td>
<td></td>
<td>☐ Échappé</td>
</tr>
<tr>
<td>10/01/2020</td>
<td></td>
<td>10/12/2020 : Mobilisation articulat° coraco-épaule : dès la mobilisation vers le haut, le coraco se remet dans l'axe → enlever posit° phy. Corrections : réaxage énergétique, travail tissulaire en comp° des cervicales.</td>
<td>Revoir semaine pro. Passage en vol. pour rééduc.</td>
</tr>
<tr>
<td>17/01/2020</td>
<td>En vol. 5. Pt vol. aujourd'hui après la séance → vole plutôt bien !</td>
<td>17/01/2020 : Épaule G moins ressortie et coraco moins décalé en interne. Sternum décalé à G. Corrections : sternum et sacs aériens interclaviculaires (tissulaire) et rythme de l'âme (venu spontanément dans les mains)</td>
<td>Revoir semaine pro.</td>
</tr>
<tr>
<td>24/01/2020</td>
<td>Étend ses ailes, décolle et vole sur quelques mètres.</td>
<td>24/01/2020 : Épaule G presque revenue dans son axe normal, sternum encore décalé à G. Digestif OK. Coraco G encore un eu rentré. Corrections : MRP + déroulé facial de l'épaule.</td>
<td>Revoir dans 15j. ou non, selon si elle vole bien. Il faut que les muscles prennent le relais et se développent avant de refaire une séance.</td>
</tr>
</tbody>
</table>

Notes :
Date du relâché : 29/01/2020
Figure 214 : Radiographie de l’Épervier 2000 de face

Figure 215 : Zoom de la radiographie de l’Épervier 200, montrant une luxation de l’articulation coracoïdo-sternale gauche. Note : la partie distale de l’os coracoïde est entraînée vers l’avant et vers le plan médian.
K) Chouette Hulotte 2006

Date d'arrivée : 10/12/2019
Cause : chocs divers.
Motif de la première consultation : suivi suite à un traumatisme. Elle a été retrouvée un filet autour du cou et des pattes et se battait pour en sortir. L'équipe soignante suppose donc qu'une séance est nécessaire pour l'aider à retrouver sa mobilité générale.

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
</table>
| 14/12/2019 : Zones de brûlures du filet sur l'apteryüm G | 20/12/2019 : Entrée de poitrine encore fermée. *Corrections :* travail sur les tensions du cou et des mm. pectoraux, entre de poitrine et harmonisation de l'axe CS. | Revoir uniquement si vol pas silencieux. Passage en grande vol. possible. | ☐ Échappé
☐ Mort
☐ Euthanasié
☐ Encore en soins |
| 19/12/2019 : Passée en vol. 2 | 20/12/2019 : FTM +++, diaphragme cervico-thoracique fermé. *Corrections :* FTM, axe CS et oiseau ventriculaire | | |
| 20/12/2019 : Passe en vol. 28m avec d'autres chouettes | | | |

L) Chouette Hulotte 2014

Date d'arrivée : 13/12/2019
Cause : choc véhicule.
Motif de la première consultation : séance suite à des traumatismes ayant provoqué des hématomes multiples sur l'humérus et la scapula à gauche.

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
</table>
☐ Échappé
☐ Mort
☐ Euthanasié
☐ Encore en soins |
| 20/12/2019 : Suture OK, mais perte de poids ! | | | |

Notes :
Date du relâché : 31/12/2020
Date du relâché : 02/01/2020
Épervier femelle 2039

Date d'arrivée : 30/12/2019
Cause : choc vitre.

Motif de la première consultation : séance suite à une collision avec une vitre et recueillie atteinte de trichomonose. Elle présentait un hématome au coude droit et l'aile droite est pendante au niveau du poignet.

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/01/2020 : Rx des ailes → OK Protocole san. → tricho</td>
<td>03/01/2020 : Digestif tendu + pg D un peu comprimé, épaules OK. Th. hautes et cerv. basses en latéro-f° droite, coude D OK. Corrections : réharmonisation du complexe épaule-coude-poignet, émergences des n. de C14 à T3 = plexus brachial.</td>
<td>Revoir si pas d'évolution.</td>
<td>☒ Relâché</td>
</tr>
</tbody>
</table>

Notes :
Date du relâché : 20/01/2020
Notes : quelques jours après la 1ère séance, portait mieux son aile et passée en vol.
N) Chouette Hulotte 36

Date d'arrivée : 21/01/2020
Cause : choc véhicule
Motif de la première consultation : suivi post-opératoire.

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrivée : fracture ouverture de l'humérus G (Figure 216). 24/01/2020 : chir, pose broche (Figures 217, 218, 219) 04/02/2020 : retiré fixateurs ext. 19/02/2020 : broche retirée, humérus en cours de reconsolidation. Bandage + posit° phy.</td>
<td>28/02/2020 : MRP global faible, complexe épaule-coro-sternum comprimé et rotat° droite (épaule) et emmené sur la droite (sternum). Corrections : fascias (trame osseuse humérus), harmonisation MRP + travail sur l'oiseau ventriculaire.</td>
<td>Continuer position phy. Revoir semaine pro.</td>
<td>☐ Relâché□ Échappé□ Mort□ Euthanasié☑ Encore en soins</td>
</tr>
<tr>
<td>03/03/2020 : rx → hum. a rebougé (Figures 220 et 221) → bandage en 8, fientes liquides. 06/03/2020 : /</td>
<td>06/03/2020 : Tensions sur les cervicales + MRP hum. G quasi absent. Gésier induré, dense et rotat° interne. Corrections : étirement-comp° cervicales + MRP hum. G + sphère digestif en tissulaire.</td>
<td>Revoir après pt. bandage (17/03)</td>
<td></td>
</tr>
<tr>
<td>24/03/2020 : Rx (Figures 223, 224), un cal osseux est présent au lieu de la fracture.</td>
<td>24/03/2020 : Elle est en volière avec d'autres chouettes.</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>15/05/2020 : Membrane massée avec de la vaseline</td>
<td>15/05/2020 : Cervicales en DO latéro-f° D + gésier induré + pg G en comp°. Aile gobalement en rot° int ; Hanche G en comp° + fort asynchronisme du MRP entre les 2 hanches. Corrections : tissulaire des hanches et du poignet G, déroulé fascial des cervicales.</td>
<td>Revoir semaine pro</td>
<td></td>
</tr>
<tr>
<td>22/05/2020 : décolle mais n'arrive pas à prendre de l'altitude</td>
<td>22/05/2020 : Trame osseuse hum. → cal osseux dense + + , cervicales OK. Corrections : en fascia + MRP des ailes.</td>
<td>Revoir semaine pro</td>
<td></td>
</tr>
</tbody>
</table>
Figure 416 : Radiographie de face de la C.H. 36 le 22 Janvier 2020
Figure 217 : Radiographie de face la C.H. 36 du 4 Février 2020
Figure 218 : Radiographie de face de la C.H. 36 le 19 Février 2020
Figure 219 : Radiographie de la face dorsale de l'aile de la C.H. 36 du 19 Février 2020
Figure 220 : Radiographie de face de la C.H. 36 le 3 Mars 2020
Figure 221 : Radiographie de la face dorsale de l'aile de la C.H. 36 le 3 Mars 2020
Figure 222 : Radiographie latéro-ventrale d la C.H. 36 le 24 Mars 2020
Figure 223 : Radiographie de face de la C.H. 36 le 24 Mars 2020
ANAMNESE

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/02/2020</td>
<td>Pattes œdèmeuses et froides + + + et œdèmes « en cloques » sur les poignets des ailes (Figures 224 et 225). Début de nécrose du poignet droit. Massé avec de l'eau chaude poignets et pattes</td>
<td>Continue les massages à l'eau chaude des pattes + massages des poignets</td>
<td>□ Relâché □ Échappé □ Mort ✗ Euthanasié □ Encore en soins</td>
</tr>
<tr>
<td>21/02/2020</td>
<td>La nécrose au poignet droit semble s'étendre, à la palpation les pattes sont moins froides qu'il y a 1 sem.</td>
<td>Continue les massages</td>
<td>Notes : Date de l'euthanasie : 10/03/2020. Cause : nécrose profonde des phalanges et des métas des deux ailes après avoir enlevé les bandages.</td>
</tr>
<tr>
<td>06/03/2020</td>
<td>Mécano des pattes « pédalo ».</td>
<td>Revoir dans 15j. car commence à en avoir marre et à s'agiter pendant la séance.</td>
<td></td>
</tr>
</tbody>
</table>

O Aigle Royal 65

Date d'arrivée : 04/02/2020
Cause : électrisation.
Motif de la première consultation : œdèmes importants sur les ailes et les pattes. L'équipe soignante aimerait pouvoir faire réduire les œdèmes et redonner de la mobilité aux pattes qui sont froides et rétractées sur elle-mêmes sans possibilité d'extension.
Figure 224 : Face ventrale du poignet gauche (la tête est vers la gauche) de l'Aigle 65
Photo personnelle

Figure 225 : Face ventrale du poignet droit (la tête est vers le haut) de l'Aigle 65, montrant un début de nécrose des tissus (flèche)
Photo personnelle
P) Buse Variable 81

Date d'arrivée : 13/02/2020
Cause : chocs divers.
Motif de la première consultation : elle ne présente aucune mobilité des deux pattes à partir du tarse et les pattes sont froides.

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
</table>
| **14/02/2020** :
Pas de sensibilité à la patte D et / motricité consciente après les tarses des deux pattes. | 14/02/2020 :
1j./2 : F/E jusqu'à la hanche.
Revoir semaine pro. | □ Relâché
□ Échappé
☒ Mort
□ Euthanasié
□ Encore en soins |

Notes :
Date de la mort : 16/02/2020

Q) Chouette Hulotte 109

Date d'arrivée : 05/03/2020
Cause : chocs divers.
Motif de la première consultation : n'étend pas les doigts de la patte gauche.

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
</table>
| **Arrivée :** avec une autre chouette, bloquée dans un conduit de cheminée. Pompons aux deux pattes pour les maintenir ouvertes. Une griffe était si longue qu'elle a transpercé la plante de la patte. Mécano des doigts 1j./2. | 13/03/2020 :
Pouce patte gauche OK. Doigts III et II contractés ++, MRP ralenti à partir de l'articulat°métatarso-phalangienne.. Hanche D en comp°. Articulat° synsacro-cocc en nette DO latéro-rot° D. Corrections : dynamique des hanches + FTM → entraînée à droite, niveau synsacrum + th.). | Continuer mécano.
Revoir semaine pro. | ☒ Relâché
□ Échappé
□ Mort
□ Euthanasié
□ Encore en soins |

Notes :
Date du relâché : 16/05/2020

- 218 -
R) Circaète Jean le Blanc 213

Date d'arrivée : 13/05/2020
Cause : choc avec un train.
Motif de la première consultation : suivi d'un gros choc, sans fractures et avec quelques hématomes.

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
</table>
| 22/05/2020 : Hématomes au bassin | 22/05/2020 : Bassin et crâne en F°, tensions des muscles internes de la cuisse gauche. Cervicales OK. Corrections : MRP + mobilisation/stretching des pattes | Revoir semaine pro | ☐ Relâché
☐ Échappé
☐ Mort
☒ Euthanasié
☒ Encore en soins |
| 31/05/2020 : Mis caméra dans sa volière, boîte + pb ext° aile, petite plaie au doigt médian de la patte D. | 31/05/2020 : FTM OK. Encore beaucoup de tensions sur l'épaule D, MRP hanche D. Corrections : fascia de l'aile D et tissulaire de la hanche. | Revoir semaine pro | |
| 07/06/2020 : Bandages aux pattes dû à de petites plaies + rx de faite montrant une inflammation de l'épaule droite → bandage en 8 | 07/06/2020 : Spasmes musculaires ++ en face interne de l'épaule D + coracoïde D en rot° int. Des spasmes sont aussi présents en face int. De l'épaule G, mais – importants. Corrections : Travail tissulaire en comp° des épaules pour relâcher les tensions musculaires associé à une réharmonisation du MRP | Continuer le suivi ! Bandage |
S) Faucon Crécerelle 404

Date d'arrivée : 02/06/2020
Cause : choc vitre.
Motif de la première consultation : Ne décolle pas dut out du sol quand il est mis en volière.

<table>
<thead>
<tr>
<th>ANAMNESE</th>
<th>Séance du...</th>
<th>Conseils aux soigneurs</th>
<th>Devenir de l'animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/06/2020 : RAS</td>
<td>07/06/2020 :</td>
<td>Continuer le suivi</td>
<td>□ Relâché</td>
</tr>
<tr>
<td></td>
<td>Enroulement global des tissus vers la gauche et en ventral. Est° des ailes OK. MRP qui « se perd » en région cervicale, quasi 0 mouvement dans le crâne. Corrections : Tissulaire des cervicales en comp° + relance c-s du MRP.</td>
<td>Peut passer en volière.</td>
<td>□ Échappé</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ Mort</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ Euthanasié</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>☒ Encore en soins</td>
</tr>
</tbody>
</table>
III. INTERPRÉTATION DES RÉSULTATS

Après discussion par mails interposés avec l'équipe soignante, dans le cas d'un traumatisme important comme une fracture, l'ostéopathie raccourcit la convalescence effectivement, car raccourcit le temps de rééducation en aidant au niveau des tensions musculaires si la fracture est consolidée correctement. L'équipe n'a pas pu me dire de combien de temps les traitements ostéopathiques raccourcissent la convalescence, car cela dépend totalement des sujets.

De plus, l'équipe soignante trouve que parfois l'ostéopathie a rendu possible le relâcher de certains oiseaux pour lesquels elle était totalement dans l'impasse car ne pouvant pas résoudre les problèmes de tensions musculaires et/ou articulaires ou des problèmes neurologiques, parfois très handicapants. Pour exemple, le cas de la BV 1502 : « même si elle n'est pas prête à être relâchée, je pense que nous aurions été dans l'impasse sans ton aide, car nous n'aurions pas su comment résoudre ses problèmes musculaires à l'aile. »

Dans le cas de traumatisme léger comme un hématome sans fracture, l'équipe n'a pas vu d'incidence de l'ostéopathie. Mais en général, les soignants observent moins de tensions sur les animaux victimes de ce genre de traumatismes car ces derniers sont moins importants.

Par contre pour les cas avec très peu d'espoir, souvent l'équipe tente l'option de l'ostéopathie, mais dans ces cas-là, c'est fréquemment une démarche de « tenter le tout pour le tout », et donc les résultats ne sont pas concluants, voire inexistants.
J'ai voulu montrer dans cette étude qu'avoir un effet bénéfique avec l'ostéopathie sur des animaux sauvages est possible, pour peu que l'approche qu'on adopte soit dans le sens du corps et de l'esprit. Aller contre ces animaux, c'est encourager la peur et le stress, que l'on essaye de doser, car en situation de stress, un animal fragile peut parfois en mourir. Trop de détente pourrait encourager l'animal à s'imprégner, et pas assez n'est juste pas salutaire pour un traitement ostéopathique efficace. Il faut donc jongler entre une détente suffisante et une séance assez courte. Cela implique donc un suivi régulier, afin de remodeler le schéma corporel de l'animal en douceur.

J'ai souhaité combiner en une seule fois deux choses importantes à mes yeux : ma passion pour ces animaux et y injecter ma philosophie naissante de l'Ostéopathie, à savoir que selon moi, il est indispensable de prendre l'individu traité dans son entièreté, de prendre en compte son passé, ce qu'il est à l'instant T de la séance, ce qu'il va devenir et faire ensuite. Toute manipulation aura à mes yeux un impact sur ces trois dimensions temporelles, puisqu'à travers nos manipulations nous pouvons (et devons selon moi) faire passer des traumatismes anciens, ancrés dans le passé, les faire comprendre et digérer par le sujet au moment présent de la séance, pour qu'il puisse appréhender son avenir avec plus de confort et de confiance en son corps et son esprit. Laisser faire l'individu comprendre ce qu'il lui a été fait. Laisser la dysfonction être, disparaître ou perdurer, selon les capacités de l'individu. La dysfonction est ce que le corps ne peut dire avec des mots. Elle est le moyen grâce auquel le corps et l'esprit peuvent continuer à vivre. La normaliser revient à dire à l'organisme qu'il faut se souvenir de comment il fonctionnait avant que cette dysfonction n'apparaisse. Ainsi, je peux presque ne plus parler de dysfonctions mais de lignes de dialogue avec les corps subtils de l'organisme. Ce dialogue, même pour un animal qui a peur de l'Homme (à raison parfois), doit être mis en place avec son accord et sa bonne volonté. Un animal qui ne veut pas s'exprimer sur certaines choses ne doit pas y être forcé, au risque d'engendrer de la défense et toujours plus de peur, je l'ai appris à mes dépends et surtout à ceux de mes patients.

L'approche de l'ostéopathie que j'ai choisie d'appliquer a bien fonctionné sur certains sujets. Parfois, même si elle ne semblait pas avoir les effets escomptés, d'autres paramètres entraient en jeu. Car même si certains étaient perdus d'avance, d'autres se sont battus mais n'en avaient pas la force ou la capacité, et d'autres encore s'en sont tirés là où je pensais les voir morts dans les quelques jours suivant la première séance. La volonté de vivre et de ne pas abandonner sont des paramètres importants à prendre en compte, et j'ai, j'espère, pu aider à rallumer l'étincelle dans certains cas.

Par ce mémoire, j'ai été confrontée à la vie, à l'état brut. La survie en milieu hostile, où chaque individu doit se battre contre des forces qui parfois le dépassent pour pouvoir vivre et où la mort peut survenir à tous les instants. Dans un monde où l'Homme vivrait en harmonie avec la nature, je n'aurais jamais effectué un tel travail. Un animal blessé est un animal mort, permettant à d'autres de continuer leur vie. Mais ici, j'ai essayé d'offrir un sursit, une parenthèse à des individus dont la survie a été perturbée par notre mode de vie, perturbant ainsi l'équilibre de la nature et faisant plus de morts que de vivants. C'est aussi ça la raison d'être des Centres de soins : réparer les erreurs des humains en offrant une seconde chance à tous les animaux qui y sont accueillis.
DISCUSSION

Le panel de sujets concernées tout au long de cette étude ne permettait pas de se concentrer sur un seul type de traumatisme, ainsi que l'effet d'une seule technique. Il serait donc intéressant de se concentrer sur une unique technique ostéopathique pour vraiment mesurer ses effets et les quantifier, les répertorier avec une mesure stricte du temps de convalescence moyen des sujets pour un traumatisme donné. Le problème est, que lorsqu'on parle de vivant, un même traumatisme ne sera pas « digéré » de la même façon d'un animal à l'autre. Cela dit, pour des traumatismes fréquents comme par exemple les fractures des os radius et ulna ou coracoïde, il serait constructif d'observer les conséquences d'une manipulation ostéopathique suite à la pose de broches, par exemple.

On pourrait aussi se concentrer sur le syndrome du whiplash, syndrome rencontré fréquemment lors de cette étude, et ne traiter que celui-ci pour mesurer les évolutions lors de la convalescence.

Le panel disponible devrait être alors établi sur des sujets plus ou moins du même âge et recueillis plus ou moins dans les mêmes conditions. Il faudrait donc constituer ce panel sur plusieurs années car d'une année sur l'autre, même si quelques constantes reviennent, cela n'est pas toujours le cas pour d'autres.
ANNEXES

ANNEXE 1

Arrêté du 11 septembre 1992 relatif aux règles générales de fonctionnement et aux caractéristiques des installations des établissements qui pratiquent des soins sur les animaux de la faune sauvage

NOR : ENV9250300A

Le ministre de l’environnement et le ministre de l’agriculture et de la forêt,

Vu l’avis du Conseil national de protection de la nature,

Arrêtent:

Art. 1er. - Les établissements conformes aux dispositions du présent arrêté sont seuls habilités à héberger, soigner et entretenir les animaux de la faune sauvage momentanément incapables de pourvoir à leur survie dans le milieu naturel. Ils sont soumis à l’autorisation prévue à l’article L.213-3 du code rural en tant qu’établissements de transit ou d’élevage qui pratiquent des soins sur les animaux de la faune sauvage.

Art. 2. - Tout animal de la faune sauvage recueilli dans un établissement visé à l’article 1er doit y être traité en vue de son insertion ou de sa réinsertion dans le milieu naturel.

Les soins vétérinaires y sont pratiqués conformément aux articles 340 et 340-1 du code rural.

Art. 3. - Les activités de vente, de location ou de présentation au public d’animaux d’espèces non domestiques sont interdites dans l’établissement même que les activités d’élevage ou de transit d’animaux non traités.

Art. 4. - Chaque établissement est entouré d’une clôture faisant obstacle au passage des animaux ou des personnes. La hauteur de cette clôture est au minimum de 1,80 mètre. Sauf s’il s’agit d’un mur, cette clôture est distincte de celle des cages et enclos réservés aux animaux.

Art. 5. - L’établissement est approvisionné en eau claire et saine et dispose de l’électricité et du téléphone.

Art. 6. - Les animaux sont placés dans des installations compatibles avec leurs impératifs biologiques, et notamment leurs aptitudes, leurs moeurs, l’état de leur santé et leurs capacités physiques.

Les caractéristiques minimales des installations sont fixées en annexe pour les cas qui y sont énumérés.

Il est interdit à l’établissement de conserver les animaux pour les soins ou la rééducation desquels il n’est pas équipé.
Art. 7. - Les installations sont conçues de façon à ne pas être la cause d’accidents pour les animaux. En particulier, les clôtures ne présentent ni aspérité ni saillie et les grillages sont tendus de façon à ne pas constituer de piège. L’usage du fil de fer barbelé est interdit.

Le sol et les parois des installations réservées aux animaux sont renouvelés ou désinfectés périodiquement. Toutes dispositions sont prises pour éviter la dissémination des maladies.

Les sols non renouvelables, les caniveaux et les conduites d’évacuation sont réalisés avec des matériaux qui permettent la désinfection et avec une pente suffisante pour l’écoulement des liquides.

Les installations sont convenablement aérées et ventilées.

Locaux et installations sont protégés contre les insectes et les rongeurs indésirables par la mise en place de dispositifs ou de moyens appropriés.

Art. 8. - Les installations d’isolement provisoire ou permanent sont en nombre suffisant. Elles accueillent, en particulier, les spécimens affaiblis ou dont l’état sanitaire est incertain, ou pouvant être dangereux pour les autres animaux. Elles sont isolées les unes des autres afin d’éviter tout contact direct entre ces animaux.

Art. 9. - Le contrôle visuel des animaux dans tout l’espace qui leur est affecté s’effectue sans ouvrir les portes d’accès.

Art. 10. - Les animaux reçoivent une nourriture équilibrée conforme aux besoins de leur espèce, suffisamment abondante.

Lorsque les animaux n’ont pas accès à un plan d’eau ou à un cours d’eau, l’abreuvement est assuré par une eau claire et saine, renouvelée, protégée du gel et constamment accessible; toutefois, l’alimentation en eau des rapaces n’est pas obligatoire.

Les animaux reçoivent les soins de propreté et d’hygiène conformes à leurs besoins.

Art. 11. - L’établissement dispose de locaux et de matériels spécialisés pour la préparation et le stockage des aliments, à l’abri des insectes et des rongeurs. Il est équipé d’un congélateur à température inférieure ou égale à moins 18 degrés Celsius pour la conservation des aliments carnés. L’ensemble est tenu en bon état de propreté et de fonctionnement.

Des élevages appropriés sont conduits, en tant que de besoin, pour alimenter les animaux se nourrissant de proies exclusivement vivantes, ainsi que pour mener à bien la phase précédant l’insertion ou la réinsertion des prédateurs dans la nature.

L’établissement possède les installations sanitaires ainsi que les matériels et produits pharmaceutiques nécessaires aux premiers soins d’urgence et aux traitements courants des animaux.

S’il y a lieu de pratiquer une euthanasie, la décision est prise par le vétérinaire.

Toutefois, les dépouilles peuvent être confiées à des collections publiques ou à des organismes de recherche, après autorisation administrative s’il y a lieu.

Les animaux morts dont l’équarrissage n’est pas obligatoire peuvent aussi être détruits dans un incinérateur ou par enfouissement dans la chaux vive, en fosse étanche.
Art. 14. - Il est établi:

1. Un règlement de service affiché dans les locaux réservés au personnel.

Ce texte, qui comprend les dispositions réglementaires en vigueur en matière d’accidents du travail, d’hygiène et de sécurité du personnel, fixe les conditions de travail, notamment pour les manipulations susceptibles de présenter un danger, ainsi que les conditions de circulation du personnel à l’intérieur de l’établissement.

2. Un plan de secours, affiché près des postes téléphoniques et dans les locaux réservés au personnel, précisant les moyens à mettre en œuvre en cas d’accident de personne.

Il indique le nom du médecin attaché à l’établissement, les personnes susceptibles d’apporter les soins médicaux immédiats, ainsi que les mesures à prendre pour l’évacuation des blessés, notamment la mise en œuvre des transports sanitaires.

Art. 15. - Les établissements autorisés conformément à l’article L.213.3 du code rural, lors de la publication du présent arrêté, disposent d’un délai de deux ans pour se conformer aux articles 4, 6 (deuxième alinéa), 8 et 9.

Art. 16. - Le directeur de la nature et des paysages et le directeur général de l’alimentation sont chargés, chacun en ce qui le concerne, de l’exécution du présent arrêté, qui sera publié au Journal officiel de la République française.

Le ministre de l’environnement,
Pour le ministre et par délégation:
Le directeur de la nature et des paysages,
G. SIMON

Le ministre de l’agriculture et de la forêt,
Pour le ministre et par délégation:
Le directeur général de l’alimentation,
J.-F. GUTHMANN

ARTICLE 6 DE L’ARRETE RELATIF AUX REGLES GENERALES DE FONCTIONNEMENT ET AUX CARACTERISTIQUES DES INSTALLATIONS DES ETABLISSEMENTS QUI PRATIQUENT DES SOINS SUR LES ANIMAUX DE LA FAUNE SAVAGE

Les spécimens de la faune sauvage recueillis se répartissent en deux catégories:
- d’une part, les œufs, les couvées, les portées ou petits de tous animaux (1);
- d’autre part, les autres animaux momentanément incapables de pourvoir à leur survie (2).
1. OEUFFS, COUVÉES, PORTÉES OU PETITS DE TOUS ANIMAUX.

1.1. Locaux et matériel d’accueil

1.1.1. Oiseaux

L’incubation des oeufs et l’élevage des couvées nécessitent un local calme et d’un nettoyage aisé, équipé au minimum d’une couveuse, d’une éleveuse et d’une lampe à rayonnement ultraviolet.

La couveuse doit permettre d’obtenir une température stabilisable à plus ou moins 0,2 °C près.

L’éleveuse doit permettre d’obtenir une température stabilisable à plus ou moins 2 °C près.

Lorsque les jeunes n’ont plus besoin de chauffage, ils doivent être élevés en groupes du même âge et de la même espèce, réunis dans des cartons ou dans des boxes à fond et parois lisses. Sauf s’il s’agit de gallinacés, d’anatidés ou de jeunes de la même nichée, ces groupes doivent réunir moins de sept oiseaux.

1.1.2. Mammifères

Les petites espèces terrestres (écureuils, hérissons, founies, renards, etc.) doivent être hébergées dans un local calme et d’un nettoyage aisé ; le logement de ces jeunes animaux doit permettre d’obtenir une température stabilisable à plus ou moins 2 °C près.

Les artiodactyles doivent être hébergés dans un enclos équipé d’un abri.

Les pinnipèdes doivent être hébergés dans un local calme, bien ventilé, disposant d’un bassin et aisé à nettoyer.

1.2. Lieux ou locaux de préparation à l’insertion dans la nature

Les contacts avec les animaux doivent être limités à l’indispensable.

1.2.1. Oiseaux

La phase de préparation à l’insertion des jeunes dans la nature doit être conduite dans un milieu caractéristique de l’espèce considérée.

A l’exception des martinets, les oiseaux doivent être libérés sur le lieu même de leur élevage et un complément de nourriture doit leur être assuré aussi longtemps que nécessaire.

1.2.2. Mammifères

Afin d’éviter toute familiarisation des animaux, les parois latérales des locaux de détention doivent être opaques.

2. AUTRES ANIMAUX MOMENTANÉMENT INCAPABLES DE POURVOIR À LEUR SURVIE.

Il y a lieu de distinguer les locaux : d’accueil (2.1), de soins vétérinaires (2.2), de rééducation (2.3) et de préparation à l’insertion ou la réinsertion dans la nature (2.4).

2.1. Locaux et matériel d’accueil pour animaux affaiblis, malades, blessés ou mazoutés

2.1.1. Oiseaux

Les oiseaux doivent être mis, immédiatement après établissement du diagnostic, dans un “ local d’accueil “ pour la période d’observation, de soins et de récupération post-traumatique.

Ce local d’accueil doit être calme, faiblement éclairé, d’une température comprise entre 16 °C et 20 °C.
Les oiseaux doivent être placés dans des cartons solides ou des boxes à fond et parois lisses ; ils ne doivent jamais être placés dans une cage à parois ou à fond grillagés ni barreaux.

Sauf dans le cas des anatidés, des gallinacés, des phoenicoptéridés et des alcidés, ces cartons ou ces boxes doivent être individuels.

Leur taille doit être suffisante pour permettre à l’oiseau de se tourner sans se heurter aux parois, mais en lui interdisant les mouvements risquant d’aggraver ses blessures ou de l’épuiser.

Leur hauteur doit être supérieure à celle de l’oiseau, de façon à le sécuriser et à ne pas l’inciter à essayer de s’échapper.

La partie supérieure des cartons, ou l’ouverture latérale des boxes, doit être couverte d’un grillage plastifié rigide à mailles très fines ou de tout autre matériau équivalent, ne présentant aucun risque pour l’oiseau (respiration, blessures, plumage...).

La litière est constituée, par exemple, par de la paille ou des aiguilles de pin pour les rapaces, par du papier absorbant pour les oiseaux d’eau et les autres espèces ; l’utilisation du foin est interdite.

2.1.2. Mammifères terrestres

Les cages et enclos doivent avoir des parois latérales opaques et dénuées d’aspérité afin d’éviter que les mammifères ne puissent abîmer ni leurs ongles ni leurs dents.

La litière, si nécessaire, doit être constituée par de la paille.

2.1.3. Pinnipèdes

Les installations doivent satisfaire aux conditions suivantes :

Le local d’accueil doit :
- être calme, donc isolé des zones de circulation ;
- être protégé des intempéries et des courants d’air intempestifs ;
- pouvoir être chauffé et ventilé ;
- être nettoyable au jet d’eau.

Chaque spécimen doit être isolé ; il doit pouvoir être manipulé quotidiennement à l’occasion de son alimentation, de ses soins et des examens vétérinaires.

Les boxes doivent :
- être d’une hauteur suffisante pour éviter les évasions ;
- mesurer 1 mètre carré pour les jeunes et 5 mètres carrés pour les adultes ;
- être imputrescibles, lisses, pourvus d’une source en position supérieure dont s’échappe en permanence un filet d’eau et d’un écoulement au point le plus bas ;

- avoir une partie du fond recouverte d’un caillebotis permettant à l’animal de s’isoler de la lame d’eau qui coule en permanence ;
- disposer d’une source de chaleur (infrarouges...) ;
- être nettoyés quotidiennement et désinfectés.
2.2. Locaux de soins vétérinaires

Il faut distinguer deux types de locaux pour les soins vétérinaires, selon qu’ils hébergent :
- des animaux blessés ou malades ;
- des oiseaux mazoutés.

2.2.1. Animaux blessés ou malades

Sauf si les soins de première urgence sont réalisés dans ses locaux professionnels, le vétérinaire vient effectuer les soins dans un local prévu à cet effet ; dans ce cas, il lui appartient de faire installer dans l’établissement une salle de soins et, éventuellement, de chirurgie. Il doit aussi veiller à ce que l’établissement dispose du minimum de matériel et de médicaments nécessaires aux soins les plus courants.

2.2.2. Oiseaux mazoutés

L’établissement doit être suffisamment équipé en bacs et produits de nettoyage pour pouvoir faire face à l’arrivée simultanée de plusieurs dizaines d’oiseaux mazoutés.

2.3. Locaux de rééducation

2.3.1. Incompatibilités interspécifiques

Il faut séparer les prédateurs de leurs proies potentielles. Sous réserve du comportement agressif de certains individus entre eux, il convient de respecter les règles suivantes :

2.3.1.1. Oiseaux

Selon leur espèce, certains oiseaux peuvent être réunis en volière interspécifique ; d’autres ne peuvent être hébergés qu’en volière monospécifique.

Oiseaux pouvant être réunis en volière interspécifique :
- Grands faucons (pélerin, lanier…) entre eux ;
- Petits faucons (crécèrele, hobereau…) et élanion entre eux ;
- Buses, bondrée, milans, circaète entre eux ;
- Busards Saint-Martin et cendré entre eux ;
- Chouettes (sauf hulotte et chevêchette) et hibou moyen-duc entre eux ;
- Ardéïdés entre eux ;
- Anatidés entre eux ;
- Laridés entre eux.

Oiseaux ne pouvant être hébergés qu’en volière monospécifique :
- Vautours, aigles, pygargue, épervier, autour, balbuzard, busard des roseaux, hibou grand-duc, hibou petit-duc, chouette chevêchette, chouette hulotte.

Oiseaux ne pouvant être hébergés qu’en volière individuelle ou au bloc :
- Tout individu supposé être imprégné de l’image de l’homme.

2.3.1.2. Mammifères terrestres

Selon leur espèce, les mammifères terrestres doivent être placés en cages ou en enclos, monospécifiques.
2.3.2. Caractéristiques des locaux

2.3.2.1. Oiseaux

L’usage du grillage à triple torsion (grillage à poules), au contact direct des oiseaux, est interdit.

Faucon pèlerin, faucon hobereau, épervier, autour : volière à parois latérales opaques de longueur : 5 mètres ; largeur : 3 mètres ; hauteur : 2,5 mètres ;

Autres rapaces : volière de longueur : 4 mètres ; largeur : 3 mètres ; hauteur : 2,5 mètres.

Toutes les volières doivent être munies de perchoirs placés à différentes hauteurs, de façon à offrir aux oiseaux la possibilité de faire des exercices au cours de la période postérieure aux soins vétérinaires.

Oiseaux d’eau et échassiers :

Blessés : volière de longueur : 10 mètres ; largeur : 4 mètres ; hauteur : 3 mètres. Un bassin en pente douce et facilement nettoyable doit y être inclus.

Mazoutés : bassin de rééducation rempli d’eau douce ou d’eau de mer (selon les espèces), ou volière construite sur l’eau avec une partie sur sol. La superficie totale de ce bassin ou de cette volière doit être de 40 mètres carrés.

Passereaux et divers : volière de longueur : 2 mètres ; largeur : 2 mètres ; hauteur : 2 mètres.

2.3.2.2. Mammifères terrestres

Chevreuils : enclos de 100 mètres carrés avec un grillage de 2,5 mètres de haut ;

Carnivores : cage avec un encuvement en béton rempli de terre et les parois latérales pleines.

Dimension des cages :

Belettes et hermines : longueur : 1 mètre ; largeur : 1 mètre ; hauteur : 1 mètre ;

Autres mustélidés, sauf loutre : longueur : 3 mètres ; largeur : 3 mètres ; hauteur : 2 mètres ;

Autres espèces : longueur : 4 mètres ; largeur : 4 mètres ; hauteur : 2 mètres.

2.4. Locaux de préparation à la réinsertion dans la nature

2.4.1. Oiseaux

L’usage du grillage à triple torsion (grillage à poules), au contact direct des oiseaux, est interdit. Les parois situées aux extrémités des volières en forme de tunnel doivent être opaques.

Faucon lanier, faucon pèlerin, faucon hobereau, autour et épervier : jusqu’à leur réinsertion dans la nature, ils doivent demeurer dans des volières dont toutes les parois latérales sont opaques. Les volières utilisées comme locaux de rééducation conviennent.

Autres rapaces, de petite taille (rapaces diurnes de taille voisine de celle du faucon crécerelle, ainsi que les rapaces nocturnes à l’exception du hibou grand-duc) : volière de longueur : 12 mètres ; largeur : 4 mètres ; hauteur : 3 mètres.

Autres rapaces, de grande taille : volière de longueur : 20 mètres ; largeur : 6 mètres ; hauteur : 3 mètres.

2.4.2. Pinnipèdes

Les installations de préparation à la réinsertion doivent répondre aux objectifs suivants :

- placer des animaux réputés guéris dans des conditions les plus proches possible de leur milieu naturel ;
- limiter le contact aux seuls soigneurs ;
- permettre aux animaux de reconstituer leurs réserves de lard ;
- tester leur aptitude à capturer du poisson vivant.

Les bassins doivent contenir de l’eau de mer, être exposés aux intempéries et situés dans une enceinte fermée.

L’eau des bassins doit être filtrée à raison de 1/5 du volume par heure ; elle doit en outre être renouvelée au taux de 1/5 par heure.

Le volume d’eau d’un bassin doit être :
De 3 mètres cubes par jeune ;
De 10 mètres cubes par adulte.

La surface d’eau libre doit être de 2 mètres carrés pour les jeunes et de 10 mètres carrés pour les adultes.

Le bassin doit être pourvu d’une plage sèche accessible aux animaux ; elle doit mesurer :
1 mètre carré par jeune ;
2 mètres carrés par adulte.

Le bassin doit pouvoir être vidé entièrement, pour un nettoyage complet, au moins une fois par semaine. Ce nettoyage doit être effectué au jet.
ANNEXE 2 :

LES PRINCIPALES MALADIES TOUCHANT LES RAPACES

A) Maladies parasitaires

1. Parasites internes

1-1. Candidose ou muguet

Agent responsable : il s'agit d'une maladie causée par une levure, *Candia albicans*, présente normalement dans la flore intestinale des oiseaux.

Facteurs favorisants : son développement pathologique est favorisé par de mauvaises conditions d'hygiène, une perturbation de la flore par l'alimentation ou un traitement en antibiothérapie ou une baisse d'immunité.

Transmission : l'agent est excrété par les fèces et la transmission se fait par ingestion.

Symptômes : la maladie peut passer le plus souvent inaperçue. Cependant, lors d'affection aiguë, l'agent pathogène se développe dans la muqueuse du jabot et de l'œsophage, rendant l'abreuvement et la prise d'aliments douloureux. Ainsi, l'animal est apathique et anorexique. La morbidité et la mortalité sont faibles.

Traitement : anti-fongiques (iodé, sulfate de cuivre...).

1-2. Trichomonose

Transmission : un rapace s'infecte en se nourrissant d'un oiseau infecté. La contagiosité entre rapaces est élevée, via le matériel, le contact direct (nourrissage des petits) ou la nourriture et l'eau de boisson.

Symptômes :
- surtout chez les jeunes ;
- lésions nécrotiques jaunâtres à caséuses dans toute la partie antérieure du tube digestif (jabot, œsophage cervical) ;
- les lésions atteignent ensuite le bec, les sinus, puis vont aux poumons et aux cœur ;
- diarrhées, dyspnée, sinusite ;
- mortalité élevée.

Traitement : mise en quarantaine, protocole sanitaire strict, spartrix ou flagyl per os. De bon pronostic si pris à temps.

1-3. Aspergillose

Agent responsable : champignon du genre *Aspergillus*, inoffensifs en règle général.

Facteurs favorisants : immunodépression, environnement humide et chaud.

Transmission : les spores du champignon sont transportés dans l'air ou dans les fientes laissées plusieurs jours dehors.

Symptômes :
- éternuements ;
- écoulements du nez ;
- respiration de plus en plus difficile ;
- respiration bec ouvert ;
- mort par asphyxie.

Traitement : marbocyl et/ou sporanox.

1-4. Hémoparasites

Agent responsable : Hæmoproteus sp, hémosporidie, parasite des érythrocytes.

Transmission : insectes piqueurs (simulies, mouches), porteurs du parasite et le transmettant via leur piqûre.
Symptômes : très souvent inapparents.
Traitement : chloroquine et minocycline.

1-5. Coccidiose

Infection parasitaire grave de l'intestin. Courante et très souvent mortelle sans traitement.

Agent responsable : parasite du genre *Isospora*, protozoaires spécifiques d'une espèce. La gravité de l'infection est proportionnelle au nombre d'ookystes présents dans l'intestin.

Cycle de l'ookyste : ingestion → développement dans la paroi du début de l'intestin → dommages cellulaires → deviennent infectieux en milieu favorable (entre 20 et 30°C).

Ce parasite touche principalement les oiseaux sauvages.

Symptômes :
- pâleur, amaigrissement ;
- plumes hérissées ;
- fientes teintées de sang ou diarrhées plus ou moins sanguinolentes ;
- oiseaux les plus sensibles en état nutritionnel faible.

Traitement : sulfaquinolaxine et/ou sulfaméthazine dans l'eau ou la nourriture. Mise en quarantaine stricte car contagiosité élevée.

1-6. Ascaridiose

Agent responsable : prolifération de vers de type *Ascaridae* (nématodes) dans les intestins, notamment *Ascaridia columbae*.

Transmission : ingestion de nourriture souillée par les fèces, par contact direct ou via le matériel ou l'équipement pour l'Homme.

Symptômes : abattement, entérite, anorexie, parfois occlusion intestinale.

Traitement : fenbendazole (*Panacur 2,5%*), pipérazine (*Oceverum*), lévamisole (*Aquaverm*), pamaoate de pyrantel (*Strongid*), ivermectine (*Ivomec*).

1-7. Cestodose

Agent responsable : tænias dont les hôtes intermédiaires sont des mollusques, insectes et arthropodes.

Transmission : par ingestion des hôtes intermédiaire ou d'un sujet infecté. L'Homme se contamine par manipulation des oiseaux, des fèces ou seul par ingestion des hôtes intermédiaires du parasite.

Symptômes : d'évolution lente. Amaigrissement, soif, fientes molles.

Traitement : *Panacur 2,5%*.

2. Parasites externes

1-1. Gales

Agent responsable : *Cnemidocoptes pile*, acarien psorique de la famille des *Cnemidocoptidae*.

Transmission : via l'environnement contaminé ou par contact direct entre individus.

Symptômes :
La maladie peut atteindre les pattes ou la région de la tête et se divise donc en deux gales distinctes, même si l'agent pathogène est le même :
- Gale des pattes : lésions croûteuses et hyperkératosiques de la région écailleuse des pattes et de la face inférieure des doigts
- Gale du bec : lésions croûteuses gris-branchâtres, spongieuses ou hyperkératosiques, débutant à la commissure du bec, les narines, la zone péri-orbitaire, puis gagnent l'ensemble de la tête.

Traitement : application percutanée au niveau de la membrane alaire d'ivermectine, désinfection des zones atteintes avec un désinfectant local.
1-2. Poux

Agent responsable : *Campanulotes bidendatus compar* (petit pou), se logeant à la base de la queue et sur le dos.

Transmission : via l'environnement ou par contact direct entre individus.

Symptômes : prurit, mauvais plumage.

Traitement : Carbaryl, ivermectine percutanée, Advocate.

1-3. Maladie de Lyme

C'est une maladie bactérienne, mais elle est transmise par la piqûre d'une tique et peut donc être considérée comme une maladie parasitaire.

Agent responsable : bactérie *Borrelia burgdorferi*. Elle est peu fréquente chez l'oiseau et de gravité variable.

Transmission : transmise par la piqûre de la tique de type *Ixodes ricinus*, porteuse de la bactérie.

Symptômes :
- érythème annuaire centrifuge puis polyarthrite ;
- érythème migrant chronique ;
- troubles neurologiques : radiculite, méningite ;
- rhumatismes articulaires, boiterie.

Traitement : antibiotiques, antiparasitaires externes en prévention.

B) Zoonoses

1. Maladies bactériennes

1-1. Psittacose

Appelée aussi ornithose, fièvre du perroquet ou chlamydogophile.

Agent responsable : bactérie *Chlamyphila psittaci*, mais les oiseaux peuvent aussi être infectés par *Ch. pneumoniae* et *Ch. trachomatis*.

Son cycle de développement comporte un stade « corps élémentaires », contaminants, et un stade « corps réticulés », forme intracellulaire capable de rester longtemps à l'abri dans les cellules hôtes sans pour autant déclencher de symptômes.

Plus de 150 espèces d'oiseaux peuvent héberger *Ch. psittaci*, notamment les Colombiformes et les Rapaces.

Transmission : l'excrétion se fait par les fèces et les sécrétions oculo-nasales et la transmission est essentiellement pas inhalation de poussières de fientes en suspension dans l'atmosphère. Il existe beaucoup de porteurs sains et d'excréteurs temporaires. L'incubation est de 4 à 20 jours.

Symptômes :
Chez l'oiseau : ils apparaissent lors d'un stress.
- larmoiement, jetage nasal, conjonctivite ;
- atteinte respiratoire avec dyspnée, toux ;
- diarrhée verdâtre.

Chez l'Homme :
- forme bénigne : fièvre, céphalées, myalgies, toux sèche ;
- forme aggravée (rare) : pneumopathies sévères.

Traitement : antibiotiques (tétracyclines, quinolones, macrolides).

1-2. Salmonellose

Agent responsable : bactéries *Salmonella typhimurium*, *S. choleraesuis*, *S. entereditis*, *S. paratyphi*. Il y a plus de 50 sérotypes actifs chez l'Oiseau. Certaines de ces bactéries peuvent résister jusqu'à 26 mois en milieu extérieur. L'incubation est de 1 à 5 jours.

Transmission : ingestion de nourriture ou d'eau contaminées par les fientes de sujets malades.
Symptômes :
Chez l'oiseau :
♦ forme suraiguë : oiseau en boule, amaigrissement rapide, septicémie foudroyante, diarrhées verdâtres, mort rapide.
♦ forme aiguë : - oiseau en boule, amaigrissement, perte d'appétit ; - diarrhées jaunes à verdâtres, ventre rouge et gonflé ; - polydipsie ; - conjonctivite purulente ; - troubles nerveux et mort.
♦ forme chronique : arthrite, parfois purulent, conjonctivite chronique, stérilité. L'animal reste excréteur même s'il survit.

Chez l'Homme : gestro-entérite principalement.
Traitemen : quinolones, chloramphénicol, lactulose dont le but est d'acidifier le milieu intestinal et ainsi le rendre hostile à la prolifération de la bactérie.

1-3. Pseudotuberculose

Agent responsable : bactérie du genre *Yersinia pseudotuberculosis*. Les oiseaux sauvages sont des réservoirs de la maladie.
Transmission : ingestion d'aliments souillés. L'homme se contamine par absorption après manipulation d'aliments souillés par des fientes d'oiseaux malades.

Symptômes :
Chez l'oiseau : apathie, diarrhées.
Chez l'Homme : septicémie (décrite à titre exceptionnel).
Traitemen : désinfection rigoureuse des locaux. Traitement antibiotique par amoxycilline, chlortétracycline, furazolidone à titre préventif sur des oiseaux encore indemnes.

1-4. Vibriose

Appelée aussi campylobactériose.

Agent responsable : *Campylobacter jejuni*, bactérie vivant à l'état commensal dans le tube digestif des oiseaux.
Transmission : par contact direct ou en consommant de l'eau souillée par les fèces.

Symptômes :
Chez l'oiseau :
- diarrhées jaunâtres, fréquentes chez les jeunes sujets ;
- entérite ;
- apathie ;
- retard de mue.
Chez l'Homme :
- augmentation de la température ;
- entérite aiguë ;
- diarrhées.

Traitemen : chez les sujets en bonne santé, la guérison est spontanée une fois l'immunité construite. Chez les autres, l'administration d'érythromycine, furazolidone, amoxycilline, tétracyclines est recommandée.

1-5. Colibacilllose

Agent responsable : *Escherichia coli*, bactérie présente dans le tube digestif de tous les oiseaux et des mammifères, associée ou non à d'autres bactéries.
Transmission : par voie orale, respiratoire ou par manipulation des animaux et des fèces.

Symptômes :
Chez l'oiseau :
- chez l'adulte : - anorexie, amaigrissement ;
- diarrhée, ventre parfois violacé.
- chez l'oisillon : dilatation abdominale, diarrhée, mort en 24H chez les oisillons entre 5 et 10 jours.

Chez l'Homme :
- diarrhée parfois sanguinolente ;
- vomissements ;
- douleurs abdominales, fièvre ;
- infection urinaire.

Traitement : antibiotiques, principalement quinolones, céphalexine, néomycine, tétracycline. Il faut veiller à une bonne hygiène des locaux et traiter les oiseaux contre la coccidiose.

2. Maladies virales

2-1. Fièvre du Nil

Touche surtout les rapaces sauvages. En France, concerne la région du Sud, notamment la Camargue.

Agent responsable : virus du genre *Flavivirus*, transmis par les moustiques.

Transmission : les oiseaux sont un réervoir naturel du virus. Les moustiques les piquant peuvent, par une seconde piqûre, transmettre le virus à l'Homme.

Symptômes : autant chez l'Homme que chez l'oiseau :
- la maladie passe la plupart du temps inaperçue ;
- syndrome grippal : fièvre, abattement, céphalées ;
- complications (15% des cas) : encéphalite, méningite.

Traitement : symptomatique, guérison spontanée en quelques jours.

2-2. Grippe aviaire

Appelée aussi peste aviaire, *Influenza aviaire* hautement pathogène (IAHP), orhtomyxovirus. À déclaration obligatoire auprès des autorités.

Agent responsable : virus *Influenza* de type A et du genre *Orthomyxoviridae*. Le virus survit une quinzaine de jours en milieu extérieur. L'incubation est de 2 à 3 jours, mais il existe des formes atténuées avec une incubation pouvant aller jusqu'à 15 jours.

Transmission : excrétion essentiellement dans les fèces (contamination par les eaux souillées), mais aussi par les sécrétions oculaires et respiratoires. Le virus se propage par les oiseaux migrateurs ou des oiseaux transportés.

Symptômes :

Chez l'oiseau :
- forme suraiguë : septicémie et mort brutale sans symptômes.
- forme suraiguë : évolution rapide vers la mort après 1 ou 2 jours de prostration intense associée à des signes :
 - cutanés : œdèmes, congestion voire hémorragie autour de la tête et des pattes ;
 - digestifs : diarrhées ;
 - respiratoires : dyspnée intense ;
 - neurologiques : incoordination locomotrice, paralysie, signes d'encéphalites.
- forme atténuée : signes digestifs et respiratoires, mortalité peu élevée.

Chez l'Homme : syndrome grippal, conjonctivite.

Traitement : symptomatique.

2-3. Maladie de Newcastle

Ou paramyxovirose ou pseudo-pest aviaire.

Agent responsable : Paramyxovirus de type PMV1 de la famille des *Paramyxoviridae*, comprenant 9 sérotypes connus. L'incubation est de 5 à 6 jours.

Transmission : le virus est transporté par les oiseaux sauvages, migrateurs ou non et il excrété dans les fientes. Il se transmet par voies respiratoire, oculaire et digestive.

Symptômes : il sont fonction des espèces atteintes, de la souche virale et de la réceptivité du malade.

Chez l'oiseau :
- souches vélogènes viscèrotropes : lésions intestinales hémorragiques avec une mortalité proche de 100% ;
- souches vélogènes neurotropes : troubles respiratoires (trachéite hémorragique) et nerveux (torticilis), avec une mortalité de 100% ;
- souches mésogènes : troubles respiratoires et nerveux de moindre intensité, avec une mortalité de 50% ;
- souches lentogènes : troubles respiratoires sans mortalité, infertilité.

Les symptômes classiques sont :
- diarrhée verdâtre ;
- apathie, prostration ;
- respiration accélérée ;
- pertes d'équilibre, cour tordu, convulsions.

Chez l'Homme : peut provoquer une conjonctivite à résolution rapide.

Traitement : quarantaine stricte. L'aciclovir (*Zovirax*) peut limiter l'extension de la maladie, notamment s'il y a des sujets gavés.

3. Maladies parasitaires

3-1. Giardiose

Agent responsable : protozoaires flagellés de type *Giardia intestinalis* ou *duodenalis* qui prolifèrent dans l'intestin. Affection courante et peu grave, le portage sain est possible.

Transmission : par contact direct.

Symptômes : prurit de la glande uropygienne, entérite diarrhéique.

Traitement : métronidazole (*Flagyl*), ronidazole (*Trichorex*).

C) Autres affections

1. Lésions oculaires

Les lésions oculaires touchent généralement plus les rapaces nocturnes, en raison de a position frontale de leurs yeux.

1-1. Ulcères cornéens

Les ulcères sont rencontrés fréquemment lors de chocs violents. Ils doivent donc être particulièrement recherchés lors de l'arrivée de l'individu au centre de soins. Ils peuvent être détectés avec l'usage de fluoroscéine.

Le traitement des ulcères est à base d'auréomycine et de tévémycine.

1-2. Hyphéma

C'est une lésion de la chambre antérieure de l'œil. Elle est rencontrée très fréquemment en cas de choc chez les nocturnes. C'est le résultat d'accumulation de sang dans la chambre antérieure de l'œil (*Figure 226*), formant un caillot. Le caillot apparaît quelques jours après le choc et se résorbe en quelques jours voire quelques semaines en l'absence de complications infectieuses ou hémorragiques.

Figure 226 : Hyphéma à l'œil droit d'un rapace nocturne
Photo du Dr. E. Ramsay
1-3. Luxation du cristallin

Un trauma à la tête peut entraîner une luxation du cristallin (Figure 227), pouvant conduire à une opacification cornéenne (Figure 228). La fuite des protéines cristalliniennes sont responsables d'une uvéite. Un cristallin luxé doit être retiré chirurgicalement pour éviter toute complication mais cela compromet donc le relâché de l'animal lorsqu'il s'agit d'un oiseau sauvage.

2. Pododermatite ou podagre

C'est l'équivalent de nos esquarres. Cela survient lorsque le perchoir de l'oiseau est toujours le même ou mal adapté. Cela peut arriver également lorsque l'oiseau ne peut pas poser une de ses pattes à cause d'un traumatisme. Il reporte alors son poids sur le membre sain, qui se retrouve « traumatisé » par le port du poids. Cela provoque donc une ulcération progressive de la plante du pied (Figure 229), pouvant ensuite atteindre tous les doigts (Figure 230).

Figure 229 : Podagre chez un rapace diurne

Photo du Dr. Ed Ramsay

Figure 230 : Podagre sur une jeune Hulotte

Photo personnelle de C. Combet
ANNEXE 3

FICHE DE SUIVI D'UN ANIMAL ACCUEilli AU CENTRE DE SOINS

<table>
<thead>
<tr>
<th>Date d'arrivée</th>
<th>Cause</th>
<th>Provenance</th>
<th>Commune/Dép.</th>
<th>Récupérateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/01/2020</td>
<td>Choc véhicule</td>
<td>Choc véhicule</td>
<td>Pont-de-Chery</td>
<td>Récupérateur</td>
</tr>
</tbody>
</table>

Diagnostic
- Température : 30.5°C
- Histologie : Hémorragie interne et fracture du radius
- Fracture du radius avec saillie externe
- Les tissus sont durs et froids

Découvert par
- Choc véhicule

Date de sortie
- En soins

Site de relâchement
- Bagne musculeux

Poids initialement
- 383.03 g

Nouveau
- Non

Bagneextérieur
- GAUCHE

Bagne intérieur
- DROITE

Observations
ANNEXE 4
MUSCLES CUTANES DE L'OISEAU
Insertions, terminaisons, fonctions, innervation, vascularisation
Selon F.W. Chamberlain, traduction personnelle

<table>
<thead>
<tr>
<th>MUSCLES</th>
<th>INSERTIONS</th>
<th>TERMINAISONS</th>
<th>FONCTION</th>
<th>INNERVATION</th>
<th>VASCULARISATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. CUTANE LATERAL DU COU</td>
<td>Processus supra-orbitaire et partie pétreuse du temporal</td>
<td>Ptérylies dorsale, latérale et ventrale</td>
<td>Érecteur des plumes des ptérylies de la région cervicale</td>
<td>Nerfs cervicaux</td>
<td>Artère vertébrale</td>
</tr>
<tr>
<td>M. CUTANE NUCHAL</td>
<td>Processus transverses de C4 à C9</td>
<td>Ptérylie cervicale dorsale</td>
<td>Érecteur de la ptérylie cervicale dorsale</td>
<td>Nerfs cervicaux</td>
<td>Artère vertébrale</td>
</tr>
<tr>
<td>M. CUTANE CLEIDO-DORSAL</td>
<td>Surface crâniale de l'extrémité distale de la clavicule</td>
<td>Ptéryla spinale dorsale</td>
<td>Érecteur de la ptérylie spinale dorsale</td>
<td>Branches dorsales des nerfs cervicaux</td>
<td>Artère dorsale</td>
</tr>
<tr>
<td>M. CUTANE SPINAL DORSAL</td>
<td>Processus épineux de C4 à C6</td>
<td>Ptérylie cervicale dorsale</td>
<td>Érecteur de la ptérylie cervicale dorsale</td>
<td>Branches dorsales des nerfs cervicaux</td>
<td>Artères intercostales</td>
</tr>
<tr>
<td>M. CUTANE GUTTURAL</td>
<td>Processus mastoïde de l'os temporal</td>
<td>Raphé médian et ptéryla cervicale ventrale</td>
<td>Tenseur de la peau de la région gutturale</td>
<td>Premier nerf cervical</td>
<td>Artère occipitale</td>
</tr>
<tr>
<td>M. CUTANE CLEIDO-TRACHEAL</td>
<td>Bord dorsal du processus hypocléidum</td>
<td>Sur le M. cutané latéral du cou, larynx et peau</td>
<td>Tenseur de la partie caudale de la ptérylie cervicale ventrale</td>
<td>Branches dorsales des nerfs cervicaux</td>
<td>Artère cervicale ventrale</td>
</tr>
<tr>
<td>M. CUTANE CLEIDO-VENTRAL</td>
<td>Bord ventral du processus hypocléidum</td>
<td>Partie caudale de la ptérylie cervicale ventrale</td>
<td>Tenseur de la ptérylie cervicale ventrale</td>
<td>Branches ventrales des nerfs cervicaux</td>
<td>Artère cervicale ventrale</td>
</tr>
<tr>
<td>M. CUTANE ABDOMINAL VENTRAL</td>
<td>Partie caudal du fascia pelvien</td>
<td>Peau de la partie ventro-latérale de l'abdomen</td>
<td>Érecteur de la ptérylie ventro-latérale du tronc</td>
<td>Nerf glutéal caudal</td>
<td>Artère glutéale caudale</td>
</tr>
</tbody>
</table>

M. CUTANE METAPATA-GIEN, divisé en 2 parties :

| M. CUTANE ILIAQUE | Processus épineux de T5 à T7 | Ptérylie humérale et patagium caudal | Tenseur des structures où il se termine | Branches dorsales des nerf thoraciques | Artères intercostales |
| M. CUTANE COSTO-HUMERAL | Articulations intercostales | Ptérylie humérale et patagium caudal | Tenseur du patagium et maintien la ptérylie | Nef intercostale | Artères intercostales |
ANNEXE 5
MUSCLES DU MEMBRE PECTORAL
 Insertions, terminaisons, fonctions, innervation, vascularisation
 Selon F.W. Chamberlain

REGION VENTRALE

<table>
<thead>
<tr>
<th>MUSCLES</th>
<th>INSERTIONS</th>
<th>TERMINAISONS</th>
<th>FONCTION</th>
<th>INNERVATION</th>
<th>VASCULARISATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSCLE EXPANSEUR DES REMIGES SECONDAIRES</td>
<td>Tendon du M. Coraco-brachial court</td>
<td>Follicules plumeux proximaux</td>
<td>Expanseur des rémiges secondaires</td>
<td>Nerf pectoral</td>
<td>Branche de l'artère axillaire</td>
</tr>
<tr>
<td>M. BRACHIO-RADIAL</td>
<td>Surface crâniale de l'extrémité distale de l'os coracoïde</td>
<td>Surface crâniale du carpe</td>
<td>Fléchisseur du coude, extenseur du carpe et tenseur du patagium</td>
<td>Nerf axillaire</td>
<td>Branche de l'artère radiale</td>
</tr>
<tr>
<td>M. PATAGIEN COURT</td>
<td>Surface crâniale de l'extrémité latérale de l'os coracoïde</td>
<td>Partie proximale et dorsale du M. extenseur radial du carpe</td>
<td>Fléchisseur du coude, extenseur du carpe et teneur du patagium</td>
<td>Nerf axillaire</td>
<td>Branche de l'artère radiale antérieure</td>
</tr>
<tr>
<td>MUSCLE EXTENSEUR RADIAL DU CARPE SUPERFICIEL</td>
<td>Surface latérale de la moitié distale de l'humérus</td>
<td>Processus dorsal du métacarpien II</td>
<td>Fléchisseur du coude et extenseur du carpe</td>
<td>Nerf radial</td>
<td>Artère radiale crâniale</td>
</tr>
<tr>
<td>MUSCLE EXTENSEUR ULNAIRE DU CARPE</td>
<td>Surface ventrale de l'extrémité distale de la diaphyse ulnaire</td>
<td>Surface latérale du métacarpien II</td>
<td>Extenseur du carpe</td>
<td>Nerf radial</td>
<td>Artère ulnaire</td>
</tr>
<tr>
<td>MUSCLE PRONATEURS LONGS ET COURTS</td>
<td>Épicondyle médial de l'humérus</td>
<td>Surface médiale et distale du radius</td>
<td>Pronateur de la main</td>
<td>Nerf médian</td>
<td>Artère médiane</td>
</tr>
<tr>
<td>MUSCLE EXTENSEUR OBLIQUE DU CARPE</td>
<td>Face ventrale de l'extrémité distale de l'ulna</td>
<td>Processus dorsal du métacarpien II</td>
<td>Extenseur et rotateur de la main</td>
<td>Nerf médian</td>
<td>Artère médiane</td>
</tr>
<tr>
<td>MUSCLE EXTENSEUR MEDIAL DES DOIGTS II ET III</td>
<td>Extrémité distale de l'ulna</td>
<td>Troisième phalange du doigt III</td>
<td>Extenseur de la main et du troisième doigt</td>
<td>Nerf médian</td>
<td>Artère médiane</td>
</tr>
<tr>
<td>MUSCLE EXTENSEUR & ADDUCTEUR DES DOIGTS II ET III</td>
<td>Épicondyle médial de l'humérus</td>
<td>Première et deuxième phalange des doigts II et III</td>
<td>Fléchisseur du coude et extenseur et adducteur de la main</td>
<td>Nerf médian</td>
<td>Artère médiane</td>
</tr>
<tr>
<td>MUSCLE FLECHISSEUR RADIAL DU CARPE</td>
<td>Épicondyle médial de l'humérus</td>
<td>Face médiale de l'extrémité distale du métacarpien</td>
<td>Supinateur de la main et fléchisseur du coude et du carpe</td>
<td>Nerf médian</td>
<td>Artère médiane et ulnaire</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>MUSCLE ANCONE MEDIAL</td>
<td>Épicondyle médial de l'humérus</td>
<td>Face ventrale de l'extrémité proximale de l'ulna</td>
<td>Extenseur du coude</td>
<td>Nerf ulnaire</td>
<td>Artère ulnaire</td>
</tr>
<tr>
<td>MUSCLE FLECHISSEUR & ABDUCTEUR DU DOIGT IV</td>
<td>Extrémité distale de l'ulna</td>
<td>Extrémité proximale de la première phalange du doigt IV</td>
<td>Abducteur du doigt IV</td>
<td>Nerf médian</td>
<td>Artère médiane</td>
</tr>
<tr>
<td>MUSCLE FLECHISSEUR COURT DU DOIGT IV</td>
<td>Extrémité distale du métacarpien IV</td>
<td>Première phalange du doigt IV</td>
<td>Fléchisseur du doigt IV</td>
<td>Nerf médian</td>
<td>Artère métacarpienne</td>
</tr>
</tbody>
</table>

MUSCLES DU MEMBRE PECTORAL – REGION DORSALE

<table>
<thead>
<tr>
<th>MUSCLES</th>
<th>INSERTIONS</th>
<th>TERMINAISONS</th>
<th>FONCTION</th>
<th>INNERVATION</th>
<th>VASCULARISATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. DELTOIDE</td>
<td>Extrémité proximale de la clavicule</td>
<td>Tubérosité deltoïdienne de l'humérus</td>
<td>Fléchisseur de l'épaule et rotateur externe de l'aile</td>
<td>Nerfs axillaire et subscapulaire</td>
<td>Artère circonflexe humérale</td>
</tr>
<tr>
<td>M. TRICEPS</td>
<td>Chef long : col de la scapula
 Chef médial : partie méedio-proximale de l'humérus
 Chef latéral : partie dorso-distale de l'humérus</td>
<td>Olécrâne</td>
<td>Fléchisseur de l'épaule et extenseur du coude</td>
<td>Nerf radial</td>
<td>Artère brachiale profonde</td>
</tr>
<tr>
<td>MUSCLE EXTENSEUR RADIAL DU CARPE PROFOND</td>
<td>Extrémité distale et latérale du radius</td>
<td>Tête humérale</td>
<td>Muscle auxilaire dans l'extension du carpe</td>
<td>Nerf radial</td>
<td>Artère radiale</td>
</tr>
<tr>
<td>M. ULNAIRE LATERAL</td>
<td>Épicondyle latéral de l'humérus et olécrâne</td>
<td>Face ventrale de la partie proximale du métacarpe</td>
<td>Fléchisseur et adducteur du doigt III</td>
<td>Nerf radial</td>
<td>Artère interosseuse</td>
</tr>
<tr>
<td>MUSCLE EXPANSEUR PRIMAIRE</td>
<td>Face latérale de l'extrémité distale de l'ulna</td>
<td>Follicules des rémiges primaires</td>
<td>Expanseur et érecteur des rémiges primaires</td>
<td>Nerf médian</td>
<td>Artère radiale</td>
</tr>
<tr>
<td>MUSCLES</td>
<td>INSERTIONS</td>
<td>TERMINAISONS</td>
<td>FONCTION</td>
<td>INNERVATION</td>
<td>VASCULARISATION</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>--------------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>MUSCLE EXTENSEUR DU DOIGT II</td>
<td>Métacarpien II et III</td>
<td>Première phalange du doigt II</td>
<td>Extenseur du doigt II</td>
<td>Nerf radial</td>
<td>Artère interosseuse</td>
</tr>
<tr>
<td>MUSCLE ADDUCTEUR DU DOIGT II</td>
<td>Métacarpien III</td>
<td>Première phalange du doigt II</td>
<td>Adducteur du doigt II</td>
<td>Nerf médian</td>
<td>Artère métacarpienne</td>
</tr>
<tr>
<td>MUSCLE SUPINATEUR MEDIAL</td>
<td>Épicondyle latéral de l'humérus</td>
<td>Deux tiers proximaux du radius</td>
<td>Fléchisseur du coude et supinateur de la main</td>
<td>Nerf radial</td>
<td>Artère interosseuse</td>
</tr>
<tr>
<td>MUSCLE SUPINATEUR LATERAL</td>
<td>Épicondyle latéral de l'humérus</td>
<td>Partie axiale de l'ulna</td>
<td>Adducteur du coude et supinateur de la main</td>
<td>Nerf radial</td>
<td>Artère interosseuse</td>
</tr>
<tr>
<td>MUSCLE EXTENSEUR DU DOIGT III</td>
<td>Faisceau long : surface axiale du radius</td>
<td>Dernière phalange du doigt III</td>
<td>Extenseur du doigt III et de la main</td>
<td>Nerf médian</td>
<td>Artère radiale</td>
</tr>
<tr>
<td>MUSCLE FLEXHISSEUR LONG DU DOIGT IV</td>
<td>Épicondyle distal et latéral de l'ulna</td>
<td>Doigt IV et follicules des rémiges primaires</td>
<td>Fléchisseur de la main et érecteur des rémiges primaires</td>
<td>Nerf médian</td>
<td>Artère radiale</td>
</tr>
<tr>
<td>MUSCLE FLEXHISSEUR COURT DU DOIGT IV</td>
<td>Bord ventral du métacarpien IV</td>
<td>Première phalange du doigt IV</td>
<td>Abducteur du doigt IV</td>
<td>Nerf médian</td>
<td>Artère radiale</td>
</tr>
<tr>
<td>MUSCLE INTEROSSEUX DORSAL</td>
<td>Bord axial des métacarpien III et IV</td>
<td>Extrémité proximale de la deuxième phalange du doigt III</td>
<td>Extenseur du doigt III</td>
<td>Nerf médian</td>
<td>Artère métacarpienne</td>
</tr>
<tr>
<td>M. ANCONÉ</td>
<td>Épicondyle latéral de l'humérus</td>
<td>Olécrâne</td>
<td>Extenseur du coude</td>
<td>Nerf radial</td>
<td>Artère radiale</td>
</tr>
<tr>
<td>M. EPINEUX</td>
<td>Face dorsale de l'extrémité distale de la scapula</td>
<td>Face dorsale de l'extrémité proximale de l'humérus</td>
<td>Extenseur et releveur du bras</td>
<td>Nerfs axillaire et radial</td>
<td>Artère circonflexe</td>
</tr>
<tr>
<td>M. CORACO-BRACHIAL DORSAL</td>
<td>Face dorsale de l'extrémité proximale du coracoïde</td>
<td>Face dorsale de l'extrémité proximale de l'humérus</td>
<td>Releveur du bras</td>
<td>Nerfs axillaire et radial</td>
<td>Artère circonflexe humérale dorsale</td>
</tr>
<tr>
<td>M. GRAND DORSAL</td>
<td>Ligament supra-épineux de T1 à T4</td>
<td>Face médiale de l'extrémité proximale de l'humérus</td>
<td>Adducteur et fléchisseur du bras</td>
<td>Nerfs cervicaux</td>
<td>Artère thoracique dorsale</td>
</tr>
<tr>
<td>MUSCLE</td>
<td>INSERTIONS</td>
<td>TERMINAISONS</td>
<td>FONCTION</td>
<td>INNERVATION</td>
<td>VASCULARISATION</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>--------------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>M. TRAPEZE</td>
<td>Ligament supra-épineux de T1 à T4</td>
<td>Bord dorsal de la scapula</td>
<td>Releveur de la scapula</td>
<td>Nerfs cervicaux</td>
<td>Artère dorsale</td>
</tr>
<tr>
<td>MUSCLE RHOMBOIDE</td>
<td>Ligament supra-épineux de T1 à T5</td>
<td>Bord dorsal de la scapula</td>
<td>Adducteur et releveur de la scapula</td>
<td>Nerfs thoraciques</td>
<td>Artère dorsale</td>
</tr>
<tr>
<td>M. GRAND ROND</td>
<td>Les ¾ caudaux de la surface latérale de la scapula</td>
<td>Surface médio-ventrale de l'extrémité proximale de l'huméris</td>
<td>Adducteur et releveur du bras</td>
<td>Nerf axillaire</td>
<td>Artère circonflexe scapulaire</td>
</tr>
<tr>
<td>M. PECTORAL SUPERFICIEL</td>
<td>Bord ventral de la crête sternale, processus latéral caudal du sternum, clavicule, lig. sternoclaviculaire et côtes sternales</td>
<td>Extrémité proximale et latérale de l'huméris</td>
<td>Adducteur et abaisseur de l'aile</td>
<td>Nerfs pectoraux</td>
<td>Artère subclavière</td>
</tr>
<tr>
<td>M. PECTORAL PROFOND</td>
<td>Surface latérale du sternum et manubrium sternal, corps de la clavicule et son ligament avec le sternum</td>
<td>Tendon dans le foramen triosseum, puis se terminant sur la fosse médi-distale de la crête humérale</td>
<td>Releveur du bras</td>
<td>Nerf pectoral</td>
<td>Artère suclavière</td>
</tr>
<tr>
<td>M. BICEPS BRACHIAL</td>
<td>Extrémité distale de la clavicule et extrémité proximale de l'huméris</td>
<td>Deux tendons sur extrémités proximales du radius et de l'ulna</td>
<td>Extenseur de l'épaule et fléchisseur du coude</td>
<td>Nerf médian</td>
<td>Artère brachiale</td>
</tr>
<tr>
<td>M. BRACHIAL</td>
<td>Près de la fosse coracoïde de l'huméris</td>
<td>Face ventrale de l'extrémité proximale de l'ulna</td>
<td>Fléchisseur du coude</td>
<td>Nerf médian</td>
<td>Artère brachiale</td>
</tr>
<tr>
<td>M. CORACO-BRACHIAL VENTRAL</td>
<td>Coracoïde et côtes sternales, surface médiale du coracoïde et ligaments sterno-scapulaires</td>
<td>Tendon à travers le sac aérien axillaire dans la fosse proximale et dorso-médiale de l'huméris</td>
<td>Abaisseur de l'aile</td>
<td>Nerfs pectoraux</td>
<td>Artère subclavière</td>
</tr>
<tr>
<td>M. SUPRA-CORACOIDE</td>
<td>Branche du coracoïde et manubrium sternal</td>
<td>Tendon dans le foramen triosseum puis sur la crête humérale</td>
<td>Élévateur de l'aile</td>
<td>Nerfs pectoraux</td>
<td>Artère subclavière</td>
</tr>
<tr>
<td>M. STERNO-CORACOIDE</td>
<td>Extrémité proximale du coracoïde</td>
<td>Processus crânial et latéral du sternum</td>
<td>Fléchisseur du coracoïde sur le sternum</td>
<td>Nerfs pectoraux</td>
<td>Artère subclavière</td>
</tr>
<tr>
<td>MUSCLES</td>
<td>INSERTIONS</td>
<td>TERMINAISONS</td>
<td>FONCTION</td>
<td>INNERVATION</td>
<td>VASCULARISATION</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>M. SERRATUS VENTRAL</td>
<td>Surface latérale et distale de C2, C5 et C7</td>
<td>Bord ventro-costal de la scapula</td>
<td>Entraîne la scapula en arrière</td>
<td>Nerf thoracique venant du plexus brachial</td>
<td>Artère thoracique dorsale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surface ventrale de la scapula</td>
<td>Inspirateur</td>
<td>Nerfs intercostaux</td>
<td>Artères intercostales</td>
</tr>
<tr>
<td>M. SERRATUS DORSAL</td>
<td>Surface latérale de l'extrémité distale des côtes vertébrales</td>
<td>Surface ventrale de la scapula</td>
<td>Inspirateur</td>
<td>Nerfs intercostaux</td>
<td>Artères intercostales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tiers distal de la surface costal de la scapula</td>
<td>En commun avec les muscles coracoïdes sur la tubérosité proximale de l'humérus</td>
<td>Nerf subscapulaire</td>
<td>Artère subscapulaire</td>
</tr>
<tr>
<td>M. TERES MINOR</td>
<td>Partie latérodistale du bord ventral de la scapula</td>
<td>Tête humérale</td>
<td>Fléchisseur de l'épaule</td>
<td>Nerf axillaire</td>
<td>Artère axillaire</td>
</tr>
</tbody>
</table>
ANNEXE 6
MUSCLES DU MEMBRE PELVIEN
Insertions, terminaisons, fonctions, innervation, vascularisation
Selon F.W. Chamberlain

<table>
<thead>
<tr>
<th>MUSCLES</th>
<th>INSERTIONS</th>
<th>TERMINAISONS</th>
<th>FONCTION</th>
<th>INNERVATION</th>
<th>VASCULARISATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. SARTORIUS</td>
<td>Vertèbres lombaires et aponévrose sur l'angle de l'ilium</td>
<td>Par une aponévrose sur la crête tibiale</td>
<td>Fléchisseur de la hanche et extenseur du genou</td>
<td>Nerfs du plexus lombaire</td>
<td>Artère fémorale</td>
</tr>
<tr>
<td>M. TENSEUR DU FASCIA LATA</td>
<td>Fascia lombaire et processus épineux des vertèbres lombaires</td>
<td>Crête tibiale dorsale</td>
<td>Fléchisseur de la hanche et extenseur du genou</td>
<td>Nerfs du plexus lombaire</td>
<td>Artère fémorale</td>
</tr>
<tr>
<td>M. BICEPS FEMORAL</td>
<td>Fascia lombaire et face dorsale de l'ilium et du sacrum</td>
<td>Partie latérale de la crête tibiale</td>
<td>Extenseur de la hanche, fléchisseur du genou, rotateur externe de la jambe et abducteur du membre</td>
<td>Nerf sciatique</td>
<td>Artère hypogastrique</td>
</tr>
<tr>
<td>MUSCLE SEMI-MEMBRA-NEUX</td>
<td>Surface latérale de l'ischium et processus transverses de cc1 et cc2</td>
<td>Surface médiale du tiers distal du fémur, aponévrose en partie médiale et proximal de la jambe</td>
<td>Extenseur de la hanche, fléchisseur du genou et rotateur interne de la jambe</td>
<td>Nerf ischiatique</td>
<td>Artère hypogastrique</td>
</tr>
<tr>
<td>M. SEMI-TENDINEUX</td>
<td>Crête et surface latérale de l'ischium</td>
<td>Aponévrose en partie médiale de la jambe part un tendon à la face caudale du tibia</td>
<td>Extenseur de la hanche, fléchisseur du genou</td>
<td>Nerf ischiatique</td>
<td>Artère hypogastrique</td>
</tr>
<tr>
<td>MUSCLE QUADRICEPS FEMORAL</td>
<td>Les muscles droit de la cuisse, vaste médial et vaste latéral s'insèrent respectivement sur la partie proximale crâniale, médiale et latéral du fémur</td>
<td>Surface proximale de la rotule et le vaste latéral sur la crête latérale du tibia</td>
<td>Extenseur du genou</td>
<td>Nerf fémoral</td>
<td>Artère fémorale</td>
</tr>
</tbody>
</table>

Note personnelle : il n'est pas fait mention d'un muscle vaste intermédiaire
<table>
<thead>
<tr>
<th>MUSCLES</th>
<th>INSERTIONS</th>
<th>TERMINAISONS</th>
<th>FONCTION</th>
<th>INNERVATION</th>
<th>VASCULARISATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. GLUTEAL</td>
<td>Partie caudale : Partie caudale de</td>
<td>Partie caudale : Surface proximo-latérale du fémur, en-dessous du grand trochanter</td>
<td>Partie caudale : Extenseur et abducteur de la hanche</td>
<td>Partie caudale : Nerf ischiatique</td>
<td>Partie caudale : Artère glutéale caudal</td>
</tr>
<tr>
<td>SUPERFICIEL</td>
<td>la fosse glutéale de l'ilium</td>
<td>Partie crâniale : Partie crâniale :</td>
<td>Partie caudale : Fléchisseur de la hanche et rotateur interne du fémur</td>
<td>Partie crâniale : Nerfs du plexus lombaire</td>
<td>Partie crâniale : Artère fémorale</td>
</tr>
<tr>
<td></td>
<td>Partie crâniale : Tubérosité</td>
<td>Au même endroit que la partie caudale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>coxale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. GLUTEAL</td>
<td>Fosse glutéale de l'ilium</td>
<td>Latéralement au grand trochanter du fémur</td>
<td>Extenseur et abducteur de la hanche</td>
<td>Nerfs du plexus lombaire</td>
<td>Artère fémorale</td>
</tr>
<tr>
<td>MEDIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. GLUTEAL</td>
<td>Bord ventro-caudal de la fosse</td>
<td>Surface latérale du fémur en-dessous du grand trochanter</td>
<td>Fléchisseur de la hanche et rotateur interne de la cuisse</td>
<td>Nerfs du plexus lombaire</td>
<td>Artère fémorale</td>
</tr>
<tr>
<td>PROFOND</td>
<td>glutéale de l'ilium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. CARRE</td>
<td>Surface ventro-latérale de</td>
<td>Surface caudo-proximale du fémur</td>
<td>Extenseur de la hanche et rotateur externe de la cuisse</td>
<td>Nerf ischiatique</td>
<td>Artère hypogastrique</td>
</tr>
<tr>
<td>FEMORAL</td>
<td>l'ischium, en-dessous de l'ischion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. CRURATIS</td>
<td>Processus pygostyle</td>
<td>Surface proximo-latérale du fémur</td>
<td>Extenseur de la hanche et abaisseur de la queue</td>
<td>Nerf ischiatique</td>
<td>Artère hypogastrique</td>
</tr>
<tr>
<td>CAUDAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. ILLAQUE</td>
<td>Milieu du bord ventral de l'ilium</td>
<td>Près du petit trochanter du fémur</td>
<td>Fléchisseur de la hanche et rotateur externe de la cuisse</td>
<td>Nerfs du plexus lombaire</td>
<td>Artère iliaque externe</td>
</tr>
<tr>
<td>MUSCLES</td>
<td>Bord ventral de l'ischium et fosse</td>
<td>Syurface proximo-latérale du fémur</td>
<td>Extenseur de la hanche et rotateur externe de la cuisse</td>
<td>Nerf ischiatique</td>
<td>Artère hypogastrique</td>
</tr>
<tr>
<td>JUMEAUX</td>
<td>acétabulaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSCLE</td>
<td>Ischium et pubis, ventralement au</td>
<td>Fosse subtrochantérique et surface</td>
<td>Extenseur de la hanche et rotateur externe de la cuisse</td>
<td>Nerf obturateur</td>
<td>Artère hypogastrique</td>
</tr>
<tr>
<td>OBTURATEUR</td>
<td>foramen obturé</td>
<td>proximo-latérale du fémur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXTERNE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSCLE</td>
<td>Toute la surface médiale de l'ischium et du pubis</td>
<td>Par un tendon dans le foramen obturé jusqu'à la surface proximo-latérale du fémur</td>
<td>Extenseur de la hanche et rotateur externe de la cuisse</td>
<td>Nerf obturateur</td>
<td>Artère hypogastrique</td>
</tr>
<tr>
<td>OBTURATEUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERNE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSCLES</td>
<td>INSERTIONS</td>
<td>TERMINAISONS</td>
<td>FONCTION</td>
<td>INNERVATION</td>
<td>VASCULARISATION</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>M. GRACILE</td>
<td>Bord caudo-ventral de l’ischium et du pubis</td>
<td>Extrémité proximale du tibia</td>
<td>Extenseur de la hanche et fléchisseur du genou</td>
<td>Nerf ischiatique</td>
<td>Artères glutéale caudale et obturatrice</td>
</tr>
<tr>
<td>MUSCLE ADDUCTEUR</td>
<td>Milieu du bord ventral de l’ischium et du pubis</td>
<td>Les ⅓ distaux du fémur et son condyle médial</td>
<td>Adducteur et extenseur de la hanche</td>
<td>Nerf obturateur</td>
<td>Artère hypogastrique</td>
</tr>
<tr>
<td>M. PECTINE</td>
<td>Bord crânio-ventral et processus prépubien du pubis</td>
<td>En continuité avec les muscles fléchisseurs perforé des doigts III et IV</td>
<td>Fléchisseur de la hanche, extenseur du genou et du tarse, fléchisseur des doigts</td>
<td>Nerfs du plexus lombaire</td>
<td>Artère fémorale</td>
</tr>
<tr>
<td>MUSCLE GASTRO-CNEMIEN</td>
<td>Chef latéral : sur l’épicondyle latéral du fémur Chef médial : épicondyle médial du fémur, crête tibiale et ligament patellaire</td>
<td>Sésamoïde hypotarsal et aponévrose sur le pied</td>
<td>Fléchisseur du genou et extenseur des pieds</td>
<td>Nerf ischiatique</td>
<td>Artère hypogastrique et drainé par la veine fémorale</td>
</tr>
<tr>
<td>MUSCLE FLECHISSEUR PERFORE ET PERFORANT DU DOIGT II</td>
<td>Épicondyle latéral du fémur</td>
<td>Seconde phalange du doigt II</td>
<td>Fléchisseur du doigt II et extenseur du tarse</td>
<td>Nerf ischiatique</td>
<td>Artère tibiale postérieure</td>
</tr>
<tr>
<td>MUSCLE FLECHISSEUR PERFORE ET PERFORANT DU DOIGT III</td>
<td>Épicondyle latéral du fémur, partie latérale de l'extrémité proximale du tibia et lig. fibio-patellaire</td>
<td>Extrémité distale de la seconde phalange du doigt III</td>
<td>Fléchisseur du doigt III et extenseur du tarse</td>
<td>Nerf ischiatique</td>
<td>Artère tibiale postérieure</td>
</tr>
<tr>
<td>MUSCLE FLECHISSEUR PERFORE DU DOIGT IV</td>
<td>Face médiale et de l'épicondyle latéral du fémur</td>
<td>Première et troisième phalange du doigt IV</td>
<td>Fléchisseur du doigt IV et extenseur du tarse</td>
<td>Nerf ischiatique</td>
<td>Artère tibiale postérieure</td>
</tr>
<tr>
<td>MUSCLE FLECHISSEUR PERFORE DU DOIGT III</td>
<td>Aire intercondylienne du fémur. Il reçoit le tendon des muscles longs péronier au milieu du métatarses</td>
<td>Extrémité distale de la première phalange du doigt III. Donne une fibre au mm. fléchisseurs perforé et perforant du doigt III</td>
<td>Fléchisseur du doigt III</td>
<td>Nerf ischiatique</td>
<td>Artère tibiale postérieure</td>
</tr>
<tr>
<td>MUSCLES</td>
<td>INSERTIONS</td>
<td>TERMINAISONS</td>
<td>FONCTION</td>
<td>INNERVATION</td>
<td>VASCULARISATION</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>---</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>MUSCLE FLECHISSEUR PERFORE DU DOIGT II</td>
<td>Aire intercondylienne où il reçoit le tendon du m. pectiné</td>
<td>Extrémité proximale de la première phalange du doigt II</td>
<td>Fléchisseur du doigt II</td>
<td>Nerf ischiatique</td>
<td>Artère tibiale postérieure</td>
</tr>
<tr>
<td>MUSCLE FLECHISSEUR LONG DU POUCHE</td>
<td>Aire intercondylienne du fémur, médialement au trois muscles précédents</td>
<td>Phalange distale du doigt I. Son tendon passe à travers les cartilages latéraux du tarse</td>
<td>Fléchisseur du doigt I</td>
<td>Nerf ischiatique</td>
<td>Artère tibiale postérieure</td>
</tr>
<tr>
<td>MUSCLE FLECHISSEUR PERFORANT OU PROFOND</td>
<td>Surface caudale de la diaphyse du tibia, les surfaces caudale et latérale de la fibula et le lig. interosseux</td>
<td>Phalanges distales des doigts III et IV</td>
<td>Fléchisseur des doigts</td>
<td>Nerf ischiatique</td>
<td>Artère tibiale postérieure</td>
</tr>
<tr>
<td>M. TIBIAL CAUDAL</td>
<td>Surface caudale du tibia, endessous du</td>
<td>Tarsométatarsarse</td>
<td>Extenseur du métatarsar</td>
<td>Nerf ischiatique</td>
<td>Artère tibiale postérieure</td>
</tr>
<tr>
<td>MUSCLE FLECHISSEUR COURT DU POUCHE</td>
<td>Face plantaire du tarsométatarsarre</td>
<td>Première phalange du doigt I</td>
<td>Fléchisseur du pouce</td>
<td>Nerf ischiatique</td>
<td>Artère métatarsienne</td>
</tr>
<tr>
<td>MUSCLE INTEROSSEUX</td>
<td>Face plantaire du tarsométatarsarre</td>
<td>Extrémités proximales des surfaces latérales des premières phalanges</td>
<td>Adducteur des doigts II et IV</td>
<td>Nerf ischiatique</td>
<td>Artère métatarsienne</td>
</tr>
<tr>
<td>M. LONG PERONIER</td>
<td>Crête tibiale et surface plantaire de la diaphyse tarsienne</td>
<td>Son tendon passe dans le celui du m. perforé des doigts au milieu du tarsométatarsarre vers le doigt III</td>
<td>Extenseur de l'articulation tarsienne et fléchisseur du doigt III</td>
<td>Nerf péronier</td>
<td>Artère tibiale antérieure</td>
</tr>
<tr>
<td>M. TIBIAL CRANIAL</td>
<td>Crête tibiale et un tendon sur l'épicondyle latéral du fémur</td>
<td>Surface dorsale de l'extrémité proximale du tarsométatarsarre</td>
<td>Fléchisseur de l'articulation tarsienne</td>
<td>Nerf péronier</td>
<td>Artère tibiale antérieure</td>
</tr>
<tr>
<td>MUSCLE EXTENSEUR LONG DES DOIGTS</td>
<td>Crête tibiale et surface dorsale de la diaphyse du tibia</td>
<td>Phalange distale des doigts II, III et IV</td>
<td>Extenseur les doigts et fléchisseur du tarse</td>
<td>Nerf péronier</td>
<td>Artère tibiale antérieure</td>
</tr>
<tr>
<td>MUSCLES</td>
<td>INSERTIONS</td>
<td>TERMINAISONS</td>
<td>FONCTION</td>
<td>INNERVATION</td>
<td>VASCULARISATION</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>M. TROISIEME PERONIER</td>
<td>Surface dorsale de la fibula, lig. interosseux et surface dorso-médiale du tarsométatarsar</td>
<td>Traverse le tarse obliquement jusqu'à la face proximale de la tubérosité plantaire du tarsométatarsar et se termine à la dernière phalange du doigt I</td>
<td>Rotateur interne du tarsométatarsar et extenseur et abducteur du doigt I</td>
<td>Nerf péronier</td>
<td>Artère métatarsienne dorsale</td>
</tr>
<tr>
<td>MUSCLE EXTENSEUR COURT DES DOIGTS</td>
<td>Surface dorsale du tarsométatarsar</td>
<td>Première phalange du doigt III et face médiale de la première phalange du doigt II</td>
<td>Abducteur du doigt II, extenseur du doigt III, adducteur du doigt IV</td>
<td>Nerf péronier</td>
<td>Artère métatarsienne dorsale</td>
</tr>
<tr>
<td>M. POPLITE</td>
<td>Face proximale et caudale du tibia</td>
<td>Tête fibulaire</td>
<td>Rotateur interne de la jambe</td>
<td>Nerf péronier</td>
<td>Artère poplitée</td>
</tr>
</tbody>
</table>
MUSCLES DU TRONC

Insertions, terminaisons, fonctions, innervation, vascularisation

Selon F.W. Chamberlain

<table>
<thead>
<tr>
<th>MUSCLES</th>
<th>INSERTIONS</th>
<th>TERMINAISONS</th>
<th>FONCTION</th>
<th>INNERVATION</th>
<th>VASCULARISATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. OBLIQUE EXTERNE DE L'ABDOMEN</td>
<td>Bord ventral et surface latérale de l'ilium et du pubis et processus unciné de K7</td>
<td>Raphé médian en partic ventrale de l'anus et processus ventral du sternum</td>
<td>Comprime l'abdomen</td>
<td>Second nerf thoracique et derniers nerfs lombaires</td>
<td>Artères intercostales et lombaires</td>
</tr>
<tr>
<td>M. OBLIQUE INTERNE DE L'ABDOMEN</td>
<td>Bord ventral de l'ilium et bord crânio-ventral du pubis</td>
<td>Bord caudal de la dernière côte vertébrale et extrémité caudale de la dernière côte sternale</td>
<td>Comprime l'abdomen</td>
<td>Nerfs lombaires et intercostaux</td>
<td>Artères intercostales et fémorale</td>
</tr>
<tr>
<td>M. DROIT DE L'ABDOMEN</td>
<td>Processus médial et latéral du sternum et bord ventral de la dernière côte et sternum</td>
<td>Bord caudo-ventral du pubis et raphé médian caudal</td>
<td>Comprime l'abdomen</td>
<td>Nerf péronier</td>
<td>Artère métatarsienne dorsale</td>
</tr>
<tr>
<td>MUSCLE TRANSVERSE DE L'ABDOMEN</td>
<td>Bord ventral de l'ilium et du pubis et surface médiale des trois dernières côtes vertébrales</td>
<td>Raphé médian caudal, surface dorsale du processus caudal et du processus intermédiaire latéral du sternum</td>
<td>Comprime l'abdomen</td>
<td>Nerfs lombaires et intercostaux</td>
<td>Artères intercostales et fémorale</td>
</tr>
<tr>
<td>M. SPHINCTER ANAL</td>
<td>Muscle circulaire autour de l'anus</td>
<td>Ferme l'anus</td>
<td></td>
<td>Huitième nerf synsacral</td>
<td>Artère hémorrhoidienne</td>
</tr>
<tr>
<td>M. ELEVATEUR DE L'ANUS</td>
<td>Tubérosité caudale de l'ilium et processus transverse de la troisième cc.</td>
<td>Au sein du muscle sphincter anal</td>
<td>Élévateur de l'anus</td>
<td>Huitième nerf synsacral</td>
<td>Artère hémorrhoidienne caudale</td>
</tr>
<tr>
<td>Mm. INTER-COSTAUX EXTERNES</td>
<td>Au nombre de 5. Sur le bord caudal de K2 à K6 incluse</td>
<td>Bord crânial de chaque côte vertébrale suivante de K3 à K7 incluse</td>
<td>Solidarisent les côtes pendant la respiration (inspiration)</td>
<td>Nerfs intercostaux</td>
<td>Artères intercostales</td>
</tr>
<tr>
<td>Mm. INTER-COSTAUX INTERNES</td>
<td>Au nombre de 5. Bord crânial de K3 à K7 incluse</td>
<td>Bord caudal de chaque côte vertébrale précédente de K2 à K6 incluse</td>
<td>Solidarisent les côtes pendant la respiration (expiration)</td>
<td>Nerfs intercostaux</td>
<td>Artères intercostales</td>
</tr>
<tr>
<td>MUSCLES</td>
<td>INSERTIONS</td>
<td>TERMINAISONS</td>
<td>FONCTION</td>
<td>INNERVATION</td>
<td>VASCULARISATION</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
<td>---------------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>MUSCLE SUBCOSTAL</td>
<td>Bord caudal du processus crânio-latéral du sternum et les côtes sternales de K2 à K6</td>
<td>Bord crânial des côtes sternales de K2 à K7</td>
<td>Inspirateur</td>
<td>Nerfs intercostaux</td>
<td>Artères intercostales</td>
</tr>
<tr>
<td>MUSCLE ELEVATEUR DES COCCYGIEENNES</td>
<td>Surface dorsale du synsacrum</td>
<td>Surface dorsale du pygostyle</td>
<td>Élévateur du pygostyle et de la queue</td>
<td>Nerfs coccygiens et sacrés</td>
<td>Artère sacrée</td>
</tr>
<tr>
<td>MUSCLE COCCYGIEEN</td>
<td>Processus caudal du pubis</td>
<td>Partie latérale : les follicules des rectrices</td>
<td>Partie latérale : étend les rectrices</td>
<td>Huitième et neuvième nerfs synsacraux</td>
<td>Branches venant de l'artère honteuse interne</td>
</tr>
<tr>
<td>MUSCLE RETRACTEUR DE L'ANUS</td>
<td>Bord ventro-caudal de l'ischium</td>
<td>Latéralement au m. sphincter anal</td>
<td>Rétracteur de l'anus et du cloaque</td>
<td>Huitième et neuvième nerfs synsacraux</td>
<td>Branches venant de l'artère honteuse interne</td>
</tr>
<tr>
<td>M. ABAISSEUR DU PYGOSTYLE</td>
<td>Pygostyle à travers le m. coccygien</td>
<td>Dorsalement au m. sphincter anal</td>
<td>Copulatoire</td>
<td>Huitième et neuvième nerfs synsacraux</td>
<td>Artère honteuse interne</td>
</tr>
<tr>
<td>MUSCLE COCCYGIEEN LATERAL</td>
<td>Vertèbres coccygiennes libres et ilium</td>
<td>Tissus fibreux de la queue et follicules des rectrices</td>
<td>Étend les rectrices et latéro-flexion de la queue</td>
<td>Nerfs sacrés</td>
<td>Artère sacrale médiane</td>
</tr>
<tr>
<td>M. ABAISSEUR DES COCCYGIENNES</td>
<td>Surface ventrale du sacrum</td>
<td>Surface ventrale du pygostyle</td>
<td>Abaisse le pygostyle</td>
<td>Nerfs sacrés</td>
<td>Artère sacrale médiane</td>
</tr>
<tr>
<td>MUSCLE LONGISSIMUS DU DOS (ilio-costal)</td>
<td>Surface médiale de l'ilium, en avant de la 3° côte vertébrale et sur les processus transverses des vertèbres et des côtes vertébrales</td>
<td>Surface médiale du milieu de l'humérus</td>
<td>Participe à la latéro-flexion du dos</td>
<td>Nerfs thoraciques et cervicaux</td>
<td>Artères intercostales et cervicales</td>
</tr>
<tr>
<td>Mm. INTER-TRANSVERSAIRES</td>
<td>De la 4° côte vertébrale au processus transverse, en avant de C5</td>
<td>Processus transverses des vertèbres cervicales crâniale à C4</td>
<td>Latéro-flexion du cou</td>
<td>Nerfs thoraciques et cervicaux</td>
<td>Artères intercostales et cervicales</td>
</tr>
<tr>
<td>MUSCLES</td>
<td>INSERTIONS</td>
<td>TERMINAISONS</td>
<td>FONCTION</td>
<td>INNERVATION</td>
<td>VASCULARISATION</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------------------</td>
<td>-------------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Mm. INTER-EPINEUX</td>
<td>Partie crâniale des processus épineux des cervicales C12, C11, C10, C9, C7 et C6</td>
<td>Partie caudale des processus épineux des cervicales C10, C9, C8, C6, C5 et C2</td>
<td>Extenseurs</td>
<td>Branches dorsales des nerfs cervicaux</td>
<td>Artère vertérale</td>
</tr>
<tr>
<td>M. SCALENE</td>
<td>Chef médial : Processus transverses des cervicales caudales
Chef dorsal : Processus transverse de la première vertèbre thoracique</td>
<td>Chef médial : Surface latérale de la première côte vertébrale
Chef dorsal : Partie proximale de la surface latérale de la 2nde côte vertébrale et son processus unciné</td>
<td>Fléchisseurs des côtes pendant la respiration</td>
<td>Partie cervicale du plexus branchial</td>
<td>Artère vertérale</td>
</tr>
<tr>
<td>Mm. ELEVATEURS DES CÔTES</td>
<td>Processus transverses de T2 à T5 incluse</td>
<td>Côtes vertébrales de K3 à K6</td>
<td>Emmène les côtes crânialement lors de l'inspiration</td>
<td>Nerfs intercostaux</td>
<td>Artères intercostales</td>
</tr>
<tr>
<td>M. SEMI-EPINEUX DORSAL</td>
<td>Processus épineux des dorsales et surface dorsale du sacrum</td>
<td>Processus épineux de T1 au processus transverse de T5</td>
<td>Extenseur du dos</td>
<td>Branches dorsales des nerfs intercostaux</td>
<td>Branches dorsales des artères intercostales</td>
</tr>
<tr>
<td>M. SEMI-EPINEUX CERVICAL</td>
<td>Du lig. supra-épineux à T1 et T2</td>
<td>Processus épineux des cervicales de C3 à C13</td>
<td>Fléchisseur du cou et de la nuque</td>
<td>Nerfs cervicaux</td>
<td>Artère vertébrale</td>
</tr>
<tr>
<td>MUSCLE DIGASTRIQUE CERVICAL</td>
<td>Ligament supra-épineux caudalement à T1 et T2</td>
<td>Partie nuchale de la crête occipitale</td>
<td>Extenseur de la tête et du cou</td>
<td>Branches des cinq premiers nerfs cervicaux</td>
<td>Artères occipitale et cervicale</td>
</tr>
<tr>
<td>MUSCLE COMPLEXUS</td>
<td>Processus transverses de C2 à C5</td>
<td>Dorso-latérament à la crête occipitale</td>
<td>Extenseur de la tête et l'emmène latéralement</td>
<td>Branches des cinq premiers nerfs cervicaux</td>
<td>Artères occipitale et vertébrale</td>
</tr>
<tr>
<td>M. MULTIFIDE DU COU</td>
<td>Processus transverses de T3 et crânialement à C4</td>
<td>Processus épineux des vertèbres précédentes, et crânialement jusqu'à l'axis.</td>
<td>Extension et latéro-flexion du cou</td>
<td></td>
<td>Non évoquées</td>
</tr>
</tbody>
</table>

- 254 -
<table>
<thead>
<tr>
<th>MUSCLES</th>
<th>INSERTIONS</th>
<th>TERMINAISONS</th>
<th>FONCTION</th>
<th>INNERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. STERNO-THYRO-HYOIDIEN</td>
<td>Manubrium sternal</td>
<td>Surface latérale du larynx, partie médiale et dorsale de l'entoglossum</td>
<td>Emmène le larynx en caudal</td>
<td>Rameau récurrent du n. vague et branches crâniales de ce nerf</td>
</tr>
<tr>
<td>M. STERNO-TRACHEAL</td>
<td>Processus crânio-latéral du sternum</td>
<td>Partie latérale et caudale de la trachée</td>
<td>Tire la trachée en caudal</td>
<td>Rameau récurrent du n. vague</td>
</tr>
<tr>
<td>M. LONG DU COU</td>
<td>Surface ventrale des vertèbres cervicales caudales à T6</td>
<td>Arc ventral de l'atlas</td>
<td>Fléchisseur du cou</td>
<td>Nerfs cervicaux</td>
</tr>
</tbody>
</table>
MUSCLES DE LA TETE

<table>
<thead>
<tr>
<th>MUSCLES</th>
<th>INSERTIONS</th>
<th>TERMINAISONS</th>
<th>FONCTION</th>
<th>INNERVATION</th>
<th>VASCULARISATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. GRAND DROIT DORSAL DE LA TETE</td>
<td>Processus épineux de C2, C3 et C4 et surface caudale de C2</td>
<td>Partie dorso-médiale de la face nuchale de l'occiput</td>
<td>Extenseur de la tête</td>
<td>Premier et second nerfs cervicaux</td>
<td>Artère occipitale</td>
</tr>
<tr>
<td>M. DROIT LATERAL DE LA TETE</td>
<td>Processus transverse de C4 et C5</td>
<td>Latéralement à la face nuchale de l'occiput</td>
<td>Flexion et latéro-flexion de la tête</td>
<td>Branches du nerf cervical crânial</td>
<td>Artères occipitale et vertébrale</td>
</tr>
<tr>
<td>M. OBLIQUE CRANIAL DE LA TETE</td>
<td>Processus épineux de l'axis</td>
<td>Face nuchale de l'occiput</td>
<td>Rotateur de la tête</td>
<td>Branches des deux premiers nerfs cervicaux</td>
<td>Artères occipitale et vertébrale</td>
</tr>
<tr>
<td>M. OBLIQUE CAUDAL DE LA TETE</td>
<td>Face dorso-latérale de C2, C3 et C4</td>
<td>Face latérale de l'atlas</td>
<td>Rotateur de la tête</td>
<td>Branches des trois premiers nerfs cervicaux</td>
<td>Artère vertébrale</td>
</tr>
<tr>
<td>M. DROIT VENTRAL DE LA TETE</td>
<td>Crête ventrale de C2 à C6</td>
<td>Les fibres divergent sur la crête latérale de la crête occipitale</td>
<td>Fléchisseur de la tête</td>
<td>Du premier au cinquième nerf cervical</td>
<td>Artère carotide</td>
</tr>
<tr>
<td>M. TRACHEO-MASTOIDIEN</td>
<td>Deux puissants faisceaux à la face ventrale du m. grand droit dorsal de la tête sur la face latérale de C3 et C4</td>
<td>Face nuchale de l'occiput, latéralement au foramen lacerum orbitaire aboralis</td>
<td>Latéro-flexion de la tête</td>
<td>Trois premiers nerfs cervicaux</td>
<td>Artères occipitale et vertébrale</td>
</tr>
<tr>
<td>M. YPSILO-TRACHEAL</td>
<td>Faisceau qui continue le m. sterno-trachéal sur la surface latérale du syrinx</td>
<td>Continue crânialement pour finir sur le cartilage thyroïde et l'entoglossum</td>
<td>Tire la trachée en caudal</td>
<td>Rameau récurrent du n. vague et branche crâniale du nerf vague</td>
<td>Artères cervicales crâniale et inférieure</td>
</tr>
<tr>
<td>MUSCLES DE LA FACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. MYLOHYOIDIEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface médiale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de la mandibule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raphé médian,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dans l'espace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intermandibulair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Élève la langue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sur la mandibule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nerf mandibulaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artère linguale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. ARTICULOHYOIDIEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mandibulaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>caudal (partie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>articulaire)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Branche crâniale : copula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>crâniale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Branche caudale : copula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>caudale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rétracteur de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l'os hyoïde et</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de la langue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nerf hypoglosse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Branche faciale de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l'artère carotide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. OCCIPITOMANDIBULAIRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface latéral de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l'occiput</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Face médio-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ventrale du</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>processus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mandibulaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>caudal (partie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>articulaire)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Élargit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l'ouverture du</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nerf facial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artère occipitale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. HYOMANDIBULAIRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moitié proximale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de la grande</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corne de l'os</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hyoïde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avance l'os</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hyoïde et la</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>langue sur la</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mandibule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface latérale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de la mandibule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nerf facial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artère occipitale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. MASSETER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporal,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pariétal et</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>frontal, entre les</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>processus auditif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>externe et supra-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>orbitaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface latérale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de la mandibule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferme le bec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nerf mandibulaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artère temporale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. SUPRAORBITO-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANDIBULAIRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface médiale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>du processus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>supra-orbitaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface latérale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de la mandibule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferme le bec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nerf mandibulaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artère temporale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSCLE QUADRATO-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANDIBULAIRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface latérale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de l'os carré</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface latérale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>et partie caudale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de la mandibule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferme le bec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nerf mandibulaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artère temporale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. TEMPORAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mastoïde et lig.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>otique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Face caudale du</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>processus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mandibulaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>médial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouvre le bec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nerf facial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artère occipitale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. HYOIDIEN TRANSVERSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grande corne de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l'os hyoïde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raphé médian et</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>surface ventrale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de la copula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>caudale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Élève la langue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>et le plancher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de la bouche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nerf hypoglosse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artère linguale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. STYLO-ENTOGLOSSUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partie distale de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>la grande corne de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l'os hyoïde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle céphalico-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hyoïdien de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l'entoglossum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fléchisseur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dorsal de la</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>langue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nerf hypoglosse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artère linguale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSCLES</td>
<td>INSERTIONS</td>
<td>TERMINAISONS</td>
<td>FONCTION</td>
<td>INNERVATION</td>
<td>VASCULARISATION</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>M. COPULO-ENTO-GLOSSUM</td>
<td>Surface ventro-latérale de la copula crâniale</td>
<td>Angle céralo-hyôïdien de l'entoglossum</td>
<td>Fléchit la langue latéralement</td>
<td>Nerf hypoglosse</td>
<td>Artère linguale</td>
</tr>
<tr>
<td>M. THYRO-ENTO-GLOSSUM</td>
<td>Cartilage latéral du larynx et certaines fibres venant des mm. Ypsilo-trachéal et sterno-thyro-hyôïdien</td>
<td>Face orale de l'entoglossum</td>
<td>Avance le larynx sur la langue et la mandible</td>
<td>Nerf hypoglosse</td>
<td>Artère linguale</td>
</tr>
<tr>
<td>MUSCLE MANDIBULO-MAXILLAIÈRE</td>
<td>Surface caudo-médiale de la mandibule</td>
<td>Bord caudal du processus palatin du maxillaire</td>
<td>Ouvre le bec</td>
<td>Nerf mandibulaire</td>
<td>Artère palatine</td>
</tr>
<tr>
<td>MUSCLE MANDIBULO-PALATIN</td>
<td>Au milieu de la face médiane de la mandibule</td>
<td>Partie rostrale de la face latérale du palatin</td>
<td>Ouvre le bec</td>
<td>Nerf mandibulaire</td>
<td>Artère palatine</td>
</tr>
<tr>
<td>M. PTERYGO-QUADRATO-MAXILLAIRE</td>
<td>Ptérygoïde, os carré et sphénoïde</td>
<td>Bord caudal du processus palatin du maxillaire</td>
<td>Ouvre le bec</td>
<td>Nerf mandibulaire</td>
<td>Artère palatine</td>
</tr>
<tr>
<td>M. PTERYGO-PALATIN</td>
<td>Partie médiale et rostrale du ptérygoïde</td>
<td>Partie latérale et caudale du palatin</td>
<td>Ouvre le bec</td>
<td>Nerf palatin</td>
<td>Artère palatine</td>
</tr>
<tr>
<td>MUSCLE QUADRATO-PALATIN</td>
<td>Partie médiale de l'os carré</td>
<td>Partie moyenne et latérale du palatin</td>
<td>Ouvre le bec</td>
<td>Nerf palatin</td>
<td>Artère palatine</td>
</tr>
<tr>
<td>M. PTERYGO-PHARYNGIEN</td>
<td>Surface ventrale et extrémité médiale du ptérygoïde</td>
<td>Fibres dirigées cuado-latéralement aux cloisons dorsale et latérale du pharynx</td>
<td>Raccourcit et comprime le pharynx lors de la déglutition</td>
<td>Nerf palatin</td>
<td>Artère carotide</td>
</tr>
<tr>
<td>MUSCLES</td>
<td>INSERTIONS</td>
<td>TERMINAISONS</td>
<td>FONCTION</td>
<td>INNERVATION</td>
<td>VASCULARISATION</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--------------</td>
<td>---</td>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>M. FRONTO-PALPEBRAL</td>
<td>Muscle inconstant. À la ligne dorsale médiane du frontal</td>
<td>Paupière supérieure</td>
<td>Élévateur de la paupière supérieure</td>
<td>Nerf temporal superficiel</td>
<td>Artère temporale superficielle</td>
</tr>
<tr>
<td>MUSCLE ORBICULAIRE DE L'OEIL</td>
<td>Os lacrymal et maxillaire</td>
<td>Entoure la marge palpébrale</td>
<td>Ferme le bec</td>
<td>Nerf ophtalmique</td>
<td>Artère ophtalmique</td>
</tr>
<tr>
<td>M. RELEVEUR DE LA PAUPIERE SUPERIEURE</td>
<td>Surface orbitaire du frontal</td>
<td>Paupière supérieure</td>
<td>Élévateur de la paupière supérieure</td>
<td>Nerf ophtalmique</td>
<td>Artère ophtalmique</td>
</tr>
<tr>
<td>M. ABAISSEUR DE LA PAUPIERE INFERIEURE</td>
<td>Septum inter-orbitaire rostral jusqu'au foramen optique</td>
<td>Paupière inférieure</td>
<td>Abaisseur de la paupière inférieure</td>
<td>Nerf ophtalmique</td>
<td>Artère ophtalmique</td>
</tr>
<tr>
<td>M. OBLIQUE DORSAL DE L'OEIL</td>
<td>Partie rostro-dorsale de la cloison inter-orbitaire</td>
<td>Slère dorsale</td>
<td>Rotateur de l’œil autour de son axe longitudinal</td>
<td>Nerf trochléaire</td>
<td>Artère ophtalmique</td>
</tr>
<tr>
<td>M. OBLIQUE VENTRAL DE L'OEIL</td>
<td>Partie rostro-dorsale de la cloison inter-orbitaire, rostralement à l'insertion du m. précédent</td>
<td>Partie caudo-ventrale de la slère</td>
<td>Rotateur de l’œil autour de son axe longitudinal</td>
<td>Nerf oculomoteur</td>
<td>Artère ophtalmique</td>
</tr>
<tr>
<td>M. DROIT MEDIAL DE L'OEIL</td>
<td>À cheval sur le nerf optique, sphénoïde et cloison inter-orbitaire</td>
<td>Rostro-méridialement à la slère</td>
<td>Rotateur médial de l’œil autour de son axe vertical</td>
<td>Nerf oculomoteur</td>
<td>Artère ophtalmique</td>
</tr>
<tr>
<td>M. DROIT LATERAL DE L'OEIL</td>
<td>Sphénoïde, latéralement au foramen optique</td>
<td>Caudalement à la slère</td>
<td>Rotateur caudal de l’œil autour de son axe vertical</td>
<td>Nerf abduens</td>
<td>Artère ophtalmique</td>
</tr>
<tr>
<td>M. DROIT DORSAL DE L'OEIL</td>
<td>Frontal, dorso-caudalement au forame optique</td>
<td>Dorso-caudalement à la slère</td>
<td>Rotateur caudal de l’œil autour de son axe horizontal</td>
<td>Nerf oculomoteur</td>
<td>Artère ophtalmique</td>
</tr>
<tr>
<td>M. DROIT VENTRAL DE L'OEIL</td>
<td>Sphénoïde, ventro-latéralement au foramen optique</td>
<td>Ventro-latéralement à la slère</td>
<td>Rotateur rostral de l’œil autour de son axe horizontal</td>
<td>Nerf oculomoteur</td>
<td>Artère ophtalmique</td>
</tr>
<tr>
<td>MUSCLES</td>
<td>INSERTIONS</td>
<td>TERMINAISONS</td>
<td>FONCTION</td>
<td>INNERVATION</td>
<td>VASCULARISATION</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>M. CARRE DE L'OEIL</td>
<td>Quadrants dorsal et caudal de la sclère</td>
<td>Son extrémité ventrale forme une poulie à travers laquelle passe le tendon du m. pyramidal</td>
<td>Assiste le m. pyramidal de l’œil dans le mouvement de la membrane nictitante et protège le n. optique des pressions</td>
<td>Nerf oculomoteur</td>
<td>Artère ophtalmique</td>
</tr>
<tr>
<td>MUSCLE PYRAMIDAL DE L'OEIL</td>
<td>Dorsalement, à la moitié du ligament orbitaire, parcourt le bord caudal de la membrane nictitante ventralement, caudo-médiatement puis dorso-caudalement au nerf optique</td>
<td>Ventralement à la sclère</td>
<td>Actionne la membrane nictitante d'abord, secondairement rotateur rostral de l’œil</td>
<td>Nerf oculomoteur</td>
<td>Nerf ophtalmique</td>
</tr>
</tbody>
</table>
Des fiches techniques ont été élaborées par Mme. Alix HISTRE dans son mémoire, Les conséquences ostéopathiques d'une immobilisation chez le Rapace, mais elles concernaient des oiseaux domestiqués, utilisés en fauconnerie. Hors, chez le Rapace sauvage, nous devons faire du mot « adaptation » un maître mot, certes, mais quelques constantes persistent et restent utiles peu importe le cas abordé. Trouvons donc ci-après des fiches techniques relatives à la manipulation de Rapaces sauvages.

FICHE N°1 : TESTS DES ARTICULATIONS DU MEMBRE PECTORAL

L'aile peut être pliée et dépliée consécutivement afin de tester l'intégrité de la membrane patagienne, s'il y a une douleur au déplié de l'aile ou des spasmes musculaires. La main libre peut se mettre en écoute sur les articulations de l'épaule, du coude et du poignet.

Figure 231 : Déplié de l'aile avec écoute sur l'épaule de la Chouette Hulotte 1935
Photo personnelle
Figure 232 : Test de l'intégrité de la membrane patagiène et écoute du coude du Moyen-Du 1994

Photo personnelle
Lors de la manipulation de Rapaces, d'autant plus lorsqu'il sont sauvages, la mobilisation des pattes doit être extrêmement prudente. En effet, selon la puissance des serres de l'oiseau manipulé, on peut facilement être blessé lors d'un mouvement de panique de l'oiseau. L'importance de la personne maintenant et son expérience avec les Rapaces devient alors primordiale.

La plupart du temps, le praticien manipule les pattes lorsque l'oiseau est sur le dos sur la table de soins, les pattes vers lui. Dans cette position, il peut ainsi contacter les hanches, les genoux (Figures 233 et 234), les tarses (Figure 235) et le pied et les doigts (Figure 236).
Figure 234 : Flexion globale du complexe genou-tarse de l'Aigle Royal 65. La main gauche écoute le genou, tandis que la droite se concentre sur le tarse.

Photo personnelle
Figure 235 : Tests de l'articulation tarsienne de l'Aigle Royal 65

Photo personnelle
Figure 236 : Tests des articulations interphalangiennes du doigt II de l'Aigle Royal 65

Photo personnelle
Les vertèbres cervicales sont trop petites pour pouvoir les contacter une à une. Ainsi, on peut réaliser deux formes de tests. D'abord se mettre de part et d'autre des cervicales et réaliser des mouvements alternés de glissements ou se concentrer sur la recherche d'une densité tissulaire, ou saisir la tête et effectuer des rotations de celle-ci avec une main en écoute sur les cervicales. Ce dernier test permet notamment de se concentrer sur le test de l'articulation C0/C1, particulièrement importante chez les Rapaces.
Les cervicales pourront être corrigées dans les positions des tests mais aussi comme présenté sur la Figure 239, en emmenant le rachis cervical dans un état global de flexion dans un étirement général des muscles du dos et du cou. Cette technique peut aussi être employée pour entraîner les cervicales en compression les unes sur les autres, technique qui sera moins douloureuse, notamment si le rachis se trouve en état d'extension globale.

Figure 239 : Correction des cervicales du Moyen-Duc 1994
Du fait de sa taille, le crâne peut être abordé dans sa globalité et il sera difficile de saisir ou de contacter un seul os en particulier, on pourra visualiser les différents os et écouter leur MRP un à un ou demander un MRP global du crâne. Pour des raisons de sécurité, nous nous placerons dorsalement à l'animal et non de face. Un doigt peut se placer entre les deux yeux pour écouter les frontaux, les pariétaux et le début des os du bec et les doigts de l'autre main peuvent se placer de part et d'autre du crâne pour écouter les temporaux, les quadrate, les jugaux et une partie des os composant la mandibule. Dans cette position on pourra aussi se concentrer sur le complexe hyoïdien, le larynx crânial, l'entrée de la trachée et sa partie crâniale, et le début de l’œsophage. Cette technique doit être réalisée sur un animal calme ou doté d'un chaperon pour éviter toute blessure.

Figure 240 : Approche du crâne sur la Chouette Hulotte 1935
FICHE N°4 : APPROCHE DES THORACIQUES ET DU SYNSACRUM

Du fait de leur fusion, les techniques relatives aux tests des vertèbres thoraciques, lombaires et sacrées seront dites des techniques intra-osseuses. Nous testerons la trame des os, s'il y a des torsions, des compressions d'un côté ou de l'autre. On pourra mettre une seule main sur toute la longueur du dos ou bien une main crâniale proche des dernières cervicales et une main sur le synsacrum, proche du pygostyle.

FICHE N°5 : ARTICULATION SYNSACRO-COCGYGIENNE

Cette articulation révèle son importance, car le pygostyle porte les rectrices. Le complexe permet donc à l'oiseau à se diriger, tel un gouvernail.

L'articulation se meut principalement dans des mouvements de latéralité, torsions et de haut en bas. Le manipulateur peut ainsi tester ces paramètres avec une main saisissant le pygostyle ou les rectrice et une main en écoute sur les dernières vertèbres soudées du synsacrum ou sur le reste du rachis (Figure 241). Les corrections pourront être fonctionnelles ou structurelles, selon les besoins de l'animal, l'ancienneté de la lésion et s'il elle engendre une douleur ou non.

Figure 241 : Manipulation de l'articulation synsacro-coccygiennne du Circaète Jean-le-Blanc avec écoute sur les cervicales et le crâne
Photo personnelle
Cette technique peut permettre de vérifier l’état des os coracoïdes, du sternum et de la furcule notamment. La bonne mobilité de ce complexe est indispensable dans le vol de l'oiseau et de la souplesse des muscles pectoraux. Les mains entourent l'entrée du thorax de l'oiseau. Les pouces peuvent se poser sur la crête sternale ou sur l'articulation coracoïdo-sternale (comme illustré sur la Figure 242).

Cette approche permet de réaliser des mouvements de latéralité du rachis cervical bas et de mettre en évidence les tensions des muscles pectoraux. On peut également corriger ce complexe de cette manière ou se concentrer sur la respiration thoracique afin de l'accompagner et de l'augmenter pour permettre l'ouverture de ce diaphragme.

Figure 242 : Test du diaphragme cervico-thoracique du Moyen-Duc 1994, avec une attention portée sur les os coracoïdes Photo personnelle
BIBLIOGRAPHIE

E. BESSON (1891), Leçons d'anatomie et de physiologie animales

A. BOISSELEAU (2012), La force de traction médullaire : étude bibliographique

H. BOUÉ et R. CHANTON (1967), Zoologie II, Mammifères, Anatomie comparée des Vertébrés, Zoogéographie

N.W. BARTON, D.C. HOUTON (1996), Factors influencing the size of some internal organs in raptors.

F.W. CHAMBERLAIN (1943), Atlas of Avian Anatomy

C. COMBET (2009), Pratique de la prise en charge de la faune sauvage de France métropolitaine par le vétérinaire praticien

N. FOX (1995), Understanding the Bird of Prey

V. GHETIE (1976), Atlas d'anatomie des oiseaux domestiques

F. HEBERT et C. BULLIOT (2019), Guide pratique de médecine interne, Chien, Chat et NAC, 5ème Édition

A. HISTRE (2014), Les conséquences ostéopathiques d'une immobilisation chez le Rapace

D.C. HOUSTON, J.E. COOPER (1975), The digestive tract of the whiteback griffon vulture and its role in disease transmission among wild ungulates

J. JEALOUS (date inconnue), L'Histoire à l'intérieur, tiré du Programme d'enseignement du modèle biodynamique en Ostéopathie

N. E. JOHNSTON (2014), The Avian Tongue

B. M. KAVOI (date inconnue), Functional comparative anatomy & physiology of birds of prey and domestic chicken

D. LANIESSE (2011), Réalisation de fiches conseils pour les propriétaires de NAC en complément de la consultation : Oiseaux et Reptiles

A. LE TOUZE et M. ROBERT (date inconnue), La cicatrisation et la cicatrice

R. MORAILLON, Y. LEGAY, D. BOUSSARIE, O. SENECAT (2010), Dictionnaire pratique de thérapeutique, Chien, Chat et NAC, 7ème Édition

C. POLLOCK (2016), Anatomie et physiologie gastro-intestinales des Rapaces

N. S. PROCTOR and PATRICK J. LYNCH (1998), Manual of Ornithology, Avian structure and function

E. M. S. ROBIN (2012), Pathologie des oiseaux de chasse au vol en France

D. SCOTT (2016), Raptor Medicine, Surgery and Rehabilitation, 2nd Edition.

SHERWOOD, KLANDORF et YANCEY (2016), Physiologie Animale

F. SILLS (2019), Fondements de la biodynamique crânio-sacrée

R. W. STORER (1982), Fused Thoracic Vertebrae in Birds: Their Occurrence and Possible Significance

L. SVENSSON, K. MULLARNEY et ZETTERSTÖM (2009), Le guide ornitho, le guide le plus complet des oiseaux d'Europe, d'Afrique du Nord et du Moyen-Orient

D. THIEBAULT (2002), Le système nerveux et les sens (Oiseaux.net)

P. TRICOT
B. TRECA (1990), Éléments d'anatomie, morphologie et physiologie avies
e
Z. VESELOVSKY (1993), Le Royaume des Oiseaux
L. WADE (2006), Diseases below the ventriculus. Proc Mid-Atlantic States

Sites internets :

Theses.vet-alfort.fr, Thèse en ligne d'anatomie des oiseaux, [en ligne] [http://theses.vet-alfort.fr/Th_multimedia/m_demars/pages/cho_acc01.htm]

People.eku.edu, Nervous System: Brain & Senses [en ligne] [http://people.eku.edu/ritchisong/birdbrain.html]

Oiseaux.net Les oiseaux de France [en ligne] [https://www.oiseaux.net/oiseaux/france.html]

Cosmovisions.com, La physiologie des Oiseaux [en ligne] [http://www.cosmovisions.com/oiseauxPhysiologie.htm]

Lafebervet.com, Médecine aviaire [en ligne] :
Ophtalmologie des Rapaces : anatomie de l’œil [https://lafeber.com/vet/fr/ophtalmologie-des-rapaces-anatomie-de-loeil/], 06 janvier 2010
Ophtalmologie des Rapaces : lésions oculaires [https://lafeber.com/vet/fr/ophtalmologie-des-rapaces-lesions-oculaires/], 06 janvier 2010

NCBI, US National Library of Medicine, National Institute of Health, Électrisation [en ligne] [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188206/], date inconnue

Osteoves33.fr, La Force de Traction médullaire (FTM) et ses excès, Catherine Laurent et Patrick Chêne [en ligne] [http://www.osteoves33.fr/spip.php?article227]

Arte.tv, Les alliés de notre organisme – Les fascias [en ligne du 31/01/2020 au 01/03/2020] [https://www.arte.tv/fr/videos/070788-000-A/les-allies-caches-de-notre-organisme-les-fascias/]

Youtube.com, Promenade sous la peau [en ligne] [https://www.youtube.com/watch?v=L5rCuYlr9o]

Application : 3D Anatomy - Bird
Ce travail a pour objectif de montrer les impacts de l'ostéopathie dans le traitement des traumatismes chez les rapaces sauvages en convalescence, et les conséquences qui en découlent. Il se base sur l'étude de la biologie, la physiologie et l'anatomie des rapaces sauvages, ainsi que sur mon expérience en Centre de Sauvegarde. L'étude est ensuite illustrée par des cas cliniques, suivis au Centre de Sauvegarde de la Faune sauvage Le Tichodrome.